Messbericht Nr.72FE-006970-F-01

Referenzgebäude Nr. 1
Hauptstrasse 45
2533 Evilard

Berner Fachhochschule
Architektur, Holz und Bau
Institut für Holzbau, Tragwerke und Architektur
Kompetenzbereich Bauphysik und Energie
Solothurnstrasse 102, CH-2504 Biel

www.ahb.bfh.ch Dezember 2015
Inhaltsverzeichnis

1 Zusammenfassung der Ergebnisse ................................................................................. 3
   1.1 Prüfobjekt ........................................................................................................ 3
   1.2 Übersicht und Ergebnisse der durchgeführten Prüfungen .................................. 3

2 Aufgabenstellung ............................................................................................................ 4

3 Messverfahren ................................................................................................................ 4
   3.1 Messung mittels Prüfrohr nach Karsten .............................................................. 4
   3.2 Messung mittels Prüfplatte nach Franke ............................................................ 4
   3.3 Messung mittels Wasseraufnahmemessgerät ...................................................... 5
   3.4 Labormessung nach EN ISO 15148:2002 .......................................................... 5

4 Durchführung der Messungen ....................................................................................... 6
   4.1 Ortstermin .......................................................................................................... 6
   4.2 Beschreibung des Objektes ................................................................................ 6
      4.2.1 Allgemeine Merkmale des Objekts .............................................................. 6
      4.2.2 Merkmale des untersuchten Putzes .............................................................. 6
      4.2.3 Untersuchte Fassaden ................................................................................. 7
   4.3 Messgeräte .......................................................................................................... 7

5 Messergebnisse .............................................................................................................. 8
   5.1 Messung mittels Prüfrohr nach Karsten .............................................................. 8
      5.1.1 Dokumentation der Messung ..................................................................... 8
      5.1.2 Durchführung der Messung ....................................................................... 9
      5.1.3 Aufgezeichnete Messdaten ....................................................................... 9
      5.1.4 Messunsicherheiten ................................................................................... 12
      5.1.5 Auswertung und Beurteilung der Messergebnisse ..................................... 14
   5.2 Messung mittels Prüfplatte nach Franke ............................................................ 19
      5.2.1 Dokumentation der Messung ................................................................... 19
      5.2.2 Durchführung der Messung ..................................................................... 20
5.2.3 Aufgezeichnete Messdaten ................................................................. 20
5.2.4 Messunsicherheiten ................................................................. 21
5.2.5 Auswertung und Beurteilung der Messergebnisse ........................................... 23
5.3 Messung mittels Wasseraufnahmemessgerät ...................................................... 28
5.3.1 Dokumentation der Messung ............................................................. 28
5.3.2 Durchführung der Messung ............................................................. 28
5.3.3 Aufgezeichnete Messdaten ............................................................. 29
5.3.4 Fehlerrechnung ............................................................................. 30
5.3.5 Auswertung und Beurteilung der Messergebnisse ........................................... 31
5.4 Labormessungen ....................................................................................... 34
5.4.1 Dokumentation der Messung ............................................................. 34
5.4.2 Durchführung der Messung ............................................................. 35
5.4.3 Aufgezeichnete Messdaten ............................................................. 36
5.4.4 Fehlerrechnung ............................................................................. 36
5.4.5 Auswertung und Beurteilung der Messergebnisse ........................................... 38
5.5 Vergleich der Messmethoden und -ergebnisse .................................................. 41
6 Verzeichnisse ................................................................................................. 43
6.1 Tabellen ............................................................................................... 43
6.2 Grafiken ............................................................................................... 44
6.3 Abbildungen ........................................................................................... 44
6.4 Literaturverzeichnis .................................................................................. 45
Anhang A: ....................................................................................................... 46
A.1 Auswertung und Regressionsgeraden Karsten’sche Prüfröhrchen ..................... 46
A.2 Auswertung und Regressionsgeraden Franke’sche Prüfplatte ......................... 69
A.3 Auswertung WAM-Messung ..................................................................... 81
A.4 Labormessung nach EN ISO 15148:2002 .................................................... 83
1 Zusammenfassung der Ergebnisse

1.1 Prüfobjekt


1.2 Übersicht und Ergebnisse der durchgeführten Prüfungen


Die höheren $W_w$-Werte der Karsten'schen Prüfröhrchen sind wahrscheinlich auf die sehr kleine Prüffläche zurückzuführen, die offensichtlich sehr sensibel auf örtliche Inhomogenitäten des Putzes reagiert.

Die höheren Werte an der Westfassade sind vermutlich auf klimatische Bedingungen zurückzuführen. Da die Regenfronten in der Schweiz meist mit den Westwinden verbunden sind, ist jene Seite auch entsprechend stärker bewittert und altert schneller.
2 Aufgabenstellung


3 Messverfahren

3.1 Messung mittels Prüfrohr nach Karsten


3.2 Messung mittels Prüfplatte nach Franke

3.3 Messung mittels Wasseraufnahmemessgerät


![Abbildung 1: Graphische Darstellung der Funktionsweise des Wasseraufnahmemessgerätes.](image1)

![Abbildung 2: Das Wasseraufnahmemessgerät (WAM).](image2)

3.4 Labormessung nach EN ISO 15148:2002

4 Durchführung der Messungen

4.1 Ortstermin

Die Messungen wurden an folgenden Ortsterminen durchgeführt:

- 29.04.2015
- 12.08.2015
- 13.08.2015
- 26.08.2015
- 28.08.2015
- 04.09.2015

4.2 Beschreibung des Objektes

4.2.1 Allgemeine Merkmale des Objekts

- Baujahr: 1928
- Historischer Putz: ja
- Denkmalschutz: nein

4.2.2 Merkmale des untersuchten Putzes

In der Abbildung 3 und Abbildung 4 sind Detailaufnahmen des Putzes an beiden untersuchten Fassaden zu sehen. Der Putz weist folgende Merkmale auf:

- Grobkörnig
- Kompakt
- Mindestens ein Farbanstrich
- Einige Risse erkennbar
- Farbe blättert ab
4.2.3 Untersuchte Fassaden


Die folgenden Abbildungen zeigen die untersuchte Nord- und Westfassade.

Abbildung 5: Ansicht der Nordfassade.  
Abbildung 6: Ansicht der Westfassade.

4.3 Messgeräte

Die Messungen wurden mit den in Tabelle 1 ersichtlichen Messgeräten durchgeführt:

Tabelle 1: Zusammenstellung der verwendeten Messgeräte.

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Messgerät</th>
<th>Hersteller und Bezeichnung</th>
<th>Seriennummer</th>
<th>Messgenauigkeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>[1]</td>
<td>Prüfrohr nach Karsten</td>
<td>Sachverstaendigen-bedarf.de</td>
<td>k.A.</td>
<td>1 ml</td>
</tr>
<tr>
<td>[2]</td>
<td>Prüfplatte nach Franke</td>
<td>TuTech Innovation GmbH</td>
<td>k.A.</td>
<td>Siehe Waage</td>
</tr>
<tr>
<td>[4]</td>
<td>Waage zu WAM</td>
<td>Höfelmeyer Waagen</td>
<td>SP4MC3MR</td>
<td>1 g</td>
</tr>
<tr>
<td>[5]</td>
<td>Küchenwaage</td>
<td>MyWeigh iBALANCE i1200</td>
<td>k.A.</td>
<td>0.1 g</td>
</tr>
<tr>
<td>[6]</td>
<td>Waage</td>
<td>Mettler Toledo PB1502-S</td>
<td>1122503232</td>
<td>0.01 g</td>
</tr>
<tr>
<td>[8]</td>
<td>Software „ImageJ“</td>
<td>National Institutes of Health</td>
<td>1.49n</td>
<td></td>
</tr>
<tr>
<td>[10]</td>
<td>Feuchtemessgerät</td>
<td>Gann GmbH · GANN</td>
<td>P-2314, 15-02448</td>
<td>0.1 Digits</td>
</tr>
</tbody>
</table>
5 Messergebnisse

5.1 Messung mittels Prüfrohr nach Karsten

5.1.1 Dokumentation der Messung


Abbildung 7: Messpunkte 1-4 Nordfassade. Abbildung 8: Messungen 5-8 Nordfassade.

Auf der Abbildung 9 und Abbildung 10, sind die Messstellen des ersten Messtages (29.04.2015) an der Westfassade zu sehen.

Abbildung 9: Messpunkte 5-8 Westfassade. Abbildung 10: Messungen 5-8 Westfassade.
5.1.2 Durchführung der Messung


Die Prüfröhrchen werden mittels Terostat-Dichtmasse an der Wand befestigt und sorgfältig abgedichtet. Anschliessend werden die Prüfröhrchen mit Wasser gefüllt und nach einer kurzen Benetzungszeit wird die Messung gestartet. Anfangs wird jede Minute notiert, wie viel Wasser aus dem Röhrchen in den Putz eingedrungen ist. Zu einem späteren Zeitpunkt, sobald der Putz deutlich weniger Wasser aufnimmt und die Skalierung des Ablesemassstabs zu ungenau wird, wechselt der Ableserhythmus von der anfänglichen Minute zuerst auf 2 Minuten und dann auf 5 Minuten. Insgesamt beträgt die Messdauer um die 40 Minuten, wobei einzelne Messungen kürzer oder länger ausfallen können, damit die Anzahl einzelner Messpunkte für eine statistische Auswertung ausreicht. Um den Einfluss des sich verändernden Druckes durch die abfallende Wassersäule möglichst gering zu halten, wird das Röhrchen bei einem Verlust von ca. 1,5 ml Flüssigkeit wieder bis zur Nullmarke aufgefüllt.

5.1.3 Aufgezeichnete Messdaten

Nachfolgende Tabelle 2 zeigt die aufgenommenen Messwerte an der Nordfassade. Tabelle 3 zeigt die Messwerte der Westfassade.
### Tabelle 2: Ergebnisse der Messungen mittels Prüfröhrchen an der Nordfassade in Evilard.

<table>
<thead>
<tr>
<th>n</th>
<th>t</th>
<th>√t (x)</th>
<th>12.08.15</th>
<th>26.08.15</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>kg/m²</td>
<td>kg/m²</td>
</tr>
<tr>
<td>----</td>
<td>------</td>
<td>--------</td>
<td>----------</td>
<td>----------</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0.13</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>0.18</td>
<td>0.14</td>
<td>0.14</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>0.22</td>
<td>0.28</td>
<td>0.28</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>0.26</td>
<td>0.28</td>
<td>0.14</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>0.29</td>
<td>0.28</td>
<td>0.28</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>0.32</td>
<td>0.42</td>
<td>0.28</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>0.34</td>
<td>0.42</td>
<td>0.70</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>0.37</td>
<td>0.70</td>
<td>0.28</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>0.39</td>
<td>0.56</td>
<td>0.85</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>0.41</td>
<td>0.56</td>
<td>0.85</td>
</tr>
<tr>
<td>11</td>
<td>12</td>
<td>0.45</td>
<td>0.70</td>
<td>0.99</td>
</tr>
<tr>
<td>12</td>
<td>15</td>
<td>0.50</td>
<td>0.70</td>
<td>1.27</td>
</tr>
<tr>
<td>13</td>
<td>18</td>
<td>0.55</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>14</td>
<td>20</td>
<td>0.58</td>
<td>0.85</td>
<td>1.55</td>
</tr>
<tr>
<td>15</td>
<td>21</td>
<td>0.59</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>16</td>
<td>24</td>
<td>0.63</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>17</td>
<td>25</td>
<td>0.65</td>
<td>0.99</td>
<td>1.83</td>
</tr>
<tr>
<td>18</td>
<td>27</td>
<td>0.67</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>19</td>
<td>30</td>
<td>0.71</td>
<td>1.13</td>
<td>2.11</td>
</tr>
<tr>
<td>20</td>
<td>35</td>
<td>0.76</td>
<td>1.27</td>
<td>2.39</td>
</tr>
<tr>
<td>21</td>
<td>40</td>
<td>0.82</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>22</td>
<td>45</td>
<td>0.87</td>
<td>1.55</td>
<td>2.96</td>
</tr>
<tr>
<td>23</td>
<td>90</td>
<td>1.22</td>
<td>-</td>
<td>1.13</td>
</tr>
</tbody>
</table>
Tabelle 3: Ergebnisse der Messungen mittels Prüfröhrchen an der Westfassade in Evilard.

<table>
<thead>
<tr>
<th>n</th>
<th>t</th>
<th>√t (x)</th>
<th>Prüfung W3</th>
<th>Prüfung W11</th>
<th>28.08.15</th>
<th>Prüfung W18</th>
<th>Prüfung W19</th>
<th>Prüfung W22</th>
<th>Prüfung W26</th>
<th>Prüfung W27</th>
<th>04.09.15</th>
<th>Prüfung W28</th>
<th>Prüfung W32</th>
<th>Prüfung W33</th>
<th>Prüfung W38</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>kg/m²</td>
<td>kg/m²</td>
<td></td>
<td>kg/m²</td>
<td>kg/m²</td>
<td>kg/m²</td>
<td>kg/m²</td>
<td>kg/m²</td>
<td></td>
<td>kg/m²</td>
<td>kg/m²</td>
<td>kg/m²</td>
<td>kg/m²</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0.13</td>
<td>0.28</td>
<td>0.28</td>
<td>0.42</td>
<td>0.42</td>
<td>0.14</td>
<td>0.14</td>
<td>0.14</td>
<td>0.14</td>
<td>0.28</td>
<td>0.28</td>
<td>0.14</td>
<td>0.28</td>
<td>0.28</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>0.18</td>
<td>0.42</td>
<td>0.42</td>
<td>0.56</td>
<td>0.56</td>
<td>0.28</td>
<td>0.28</td>
<td>0.14</td>
<td>0.28</td>
<td>0.28</td>
<td>0.28</td>
<td>0.14</td>
<td>0.14</td>
<td>0.14</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>0.22</td>
<td>0.56</td>
<td>0.56</td>
<td>0.63</td>
<td>0.63</td>
<td>0.42</td>
<td>0.42</td>
<td>0.28</td>
<td>0.28</td>
<td>0.70</td>
<td>0.28</td>
<td>0.56</td>
<td>0.42</td>
<td>0.70</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>0.26</td>
<td>0.70</td>
<td>0.70</td>
<td>0.70</td>
<td>0.70</td>
<td>0.49</td>
<td>0.56</td>
<td>0.42</td>
<td>0.42</td>
<td>0.70</td>
<td>0.42</td>
<td>0.85</td>
<td>0.42</td>
<td>0.70</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>0.29</td>
<td>0.70</td>
<td>0.70</td>
<td>0.85</td>
<td>0.85</td>
<td>0.56</td>
<td>0.70</td>
<td>0.56</td>
<td>0.56</td>
<td>0.70</td>
<td>0.56</td>
<td>0.99</td>
<td>0.49</td>
<td>0.85</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>0.32</td>
<td>0.85</td>
<td>0.85</td>
<td>0.85</td>
<td>0.85</td>
<td>0.56</td>
<td>0.85</td>
<td>0.63</td>
<td>0.70</td>
<td>0.70</td>
<td>1.13</td>
<td>0.63</td>
<td>0.99</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>0.34</td>
<td>0.85</td>
<td>0.85</td>
<td>0.92</td>
<td>0.92</td>
<td>0.70</td>
<td>0.99</td>
<td>0.70</td>
<td>0.70</td>
<td>0.97</td>
<td>1.13</td>
<td>0.63</td>
<td>0.99</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>0.37</td>
<td>-</td>
<td>0.99</td>
<td>0.99</td>
<td>0.99</td>
<td>0.77</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>0.39</td>
<td>1.13</td>
<td>0.99</td>
<td>0.99</td>
<td>1.13</td>
<td>0.85</td>
<td>1.13</td>
<td>0.92</td>
<td>0.85</td>
<td>1.41</td>
<td>0.77</td>
<td>1.27</td>
<td>0.77</td>
<td>1.20</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>0.41</td>
<td>1.13</td>
<td>1.13</td>
<td>1.13</td>
<td>1.13</td>
<td>0.92</td>
<td>1.27</td>
<td>1.27</td>
<td>0.99</td>
<td>1.55</td>
<td>0.77</td>
<td>1.55</td>
<td>0.77</td>
<td>1.27</td>
</tr>
<tr>
<td>11</td>
<td>11</td>
<td>0.45</td>
<td>1.27</td>
<td>1.41</td>
<td>1.27</td>
<td>1.27</td>
<td>1.06</td>
<td>1.48</td>
<td>1.20</td>
<td>1.20</td>
<td>1.76</td>
<td>0.92</td>
<td>1.76</td>
<td>0.92</td>
<td>1.41</td>
</tr>
<tr>
<td>12</td>
<td>12</td>
<td>0.50</td>
<td>1.55</td>
<td>1.69</td>
<td>1.41</td>
<td>1.48</td>
<td>1.20</td>
<td>1.83</td>
<td>1.41</td>
<td>1.13</td>
<td>1.97</td>
<td>1.06</td>
<td>1.97</td>
<td>1.06</td>
<td>1.55</td>
</tr>
<tr>
<td>13</td>
<td>13</td>
<td>0.55</td>
<td>-</td>
<td>1.62</td>
<td>1.62</td>
<td>1.34</td>
<td>1.97</td>
<td>1.69</td>
<td>1.27</td>
<td>2.32</td>
<td>1.20</td>
<td>1.83</td>
<td>2.32</td>
<td>1.20</td>
<td>1.83</td>
</tr>
<tr>
<td>14</td>
<td>14</td>
<td>0.58</td>
<td>1.97</td>
<td>2.11</td>
<td>-</td>
</tr>
<tr>
<td>15</td>
<td>15</td>
<td>0.59</td>
<td>-</td>
<td>1.83</td>
<td>1.76</td>
<td>1.48</td>
<td>2.25</td>
<td>1.97</td>
<td>1.34</td>
<td>2.61</td>
<td>1.34</td>
<td>1.97</td>
<td>2.61</td>
<td>1.34</td>
<td>1.97</td>
</tr>
<tr>
<td>16</td>
<td>16</td>
<td>0.65</td>
<td>2.25</td>
<td>2.54</td>
<td>1.97</td>
<td>2.04</td>
<td>1.69</td>
<td>2.61</td>
<td>2.25</td>
<td>1.55</td>
<td>2.89</td>
<td>1.62</td>
<td>2.89</td>
<td>1.62</td>
<td>2.54</td>
</tr>
<tr>
<td>17</td>
<td>17</td>
<td>0.68</td>
<td>-</td>
<td>2.11</td>
<td>2.25</td>
<td>1.90</td>
<td>2.75</td>
<td>2.39</td>
<td>1.69</td>
<td>3.03</td>
<td>1.69</td>
<td>2.39</td>
<td>3.03</td>
<td>1.69</td>
<td>2.39</td>
</tr>
<tr>
<td>18</td>
<td>18</td>
<td>0.71</td>
<td>2.68</td>
<td>-</td>
</tr>
<tr>
<td>19</td>
<td>19</td>
<td>0.73</td>
<td>-</td>
<td>2.18</td>
<td>2.46</td>
<td>2.04</td>
<td>3.17</td>
<td>2.68</td>
<td>1.83</td>
<td>3.45</td>
<td>1.90</td>
<td>2.68</td>
<td>3.45</td>
<td>1.90</td>
<td>2.68</td>
</tr>
<tr>
<td>20</td>
<td>20</td>
<td>0.76</td>
<td>3.10</td>
<td>-</td>
</tr>
<tr>
<td>21</td>
<td>21</td>
<td>0.82</td>
<td>-</td>
<td>-</td>
<td>2.32</td>
<td>3.73</td>
<td>3.31</td>
<td>2.11</td>
<td>4.01</td>
<td>2.18</td>
<td>3.17</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
5.1.4 Messunsicherheiten

Die Messunsicherheiten der verschiedenen physikalischen Grössen werden unter Zuhilfenahme des Gauß'schen Fehlerfortpflanzungsgesetzes abgeschätzt:

\[
df = \sqrt{\left(\frac{\partial f}{\partial x_1} \cdot dx_1 \right)^2 + \left(\frac{\partial f}{\partial x_2} \cdot dx_2 \right)^2 + \cdots + \left(\frac{\partial f}{\partial x_n} \cdot dx_n \right)^2}
\]

Formel 1

Dabei bezeichnet

- \(x_1\) bis \(x_n\) unabhängige physikalische Grössen
- \(dx_1\) bis \(dx_n\) Messunsicherheit der unabhängigen physikalischen Grössen \(x_1\) bis \(x_n\)
- \(f\) die abhängige physikalische Grösse
- \(df\) der Fehler der abhängigen physikalischen Grösse \(f\)

5.1.4.1 Prüffläche der Karsten'schen Röhrchen

Die Messunsicherheit des Durchmessers \(d\) der Prüffläche beträgt

\[d = (3 \pm 0,2) \text{ cm}\]

Formel 2

Die Prüffläche \(A\) berechnet sich wie folgt:

\[A = \pi \left(\frac{d}{2}\right)^2\]

Formel 3

Mit dem Messfehler des Durchmessers \(\Delta d\) wird die Messunsicherheit der Prüffläche \(dA\) mit Formel 1 bestimmt:

\[dA = \frac{\partial A}{\partial d} \cdot \Delta d = \frac{\pi}{4} \cdot 2d \cdot \Delta d = \frac{\pi}{2} \cdot 3 \text{ cm} \cdot 0,2 \text{ cm} = 0,94 \text{ cm}^2\]

Formel 4

Damit ergibt sich die Prüffläche zu

\[A = (7,1 \pm 0,94) \text{ cm}^2\]

Formel 5
5.1.4.2 Wasserstromdichte

Die aufgesaugte Wassermenge, die pro m² bis zu einer bestimmten Zeit t aufgenommen wird, kann als Wasserstromdichte $\Phi$ dargestellt werden:

$$\Phi = \frac{m(t)}{A}$$  \hspace{1cm} \text{Formel 6}

Die Messunsicherheit der Prüffläche A ergibt sich nach der Formel 3.

Die Ablesegenauigkeit des Volumens V des vom Putz aufgesaugten Wassers beträgt $dV = 0,05$ ml. Hieraus ergibt sich mit der Dichte von Wasser von 1 kg/dm³ die Messunsicherheit der Masse des aufgesaugten Wassers von

$$dm = \pm 0,05 \times 10^{-3} kg$$  \hspace{1cm} \text{Formel 7}

Damit bestimmt sich die Messunsicherheit der Wasserstromdichte zu

$$d\Phi = \sqrt{\left(\frac{\partial \Phi}{\partial m} \cdot dm\right)^2 + \left(\frac{\partial \Phi}{\partial A} \cdot dA\right)^2} = \sqrt{\left(\frac{1}{A} \cdot dm\right)^2 + \left(-\frac{m}{A^2} \cdot dA\right)^2}$$  \hspace{1cm} \text{Formel 8}

5.1.4.3 Wurzel aus der Zeit

Die Genauigkeit der Bestimmung des Messzeitpunktes t beträgt $dt = 2$ s. Um eine lineare Regressionsgerade an die Messwerte anpassen zu können, werden diese über der Wurzel aus dem Messzeitpunkt aufgetragen. Der Fehler von $d\sqrt{t}$ ergibt sich wie folgt:

$$d\sqrt{t} = \frac{d\sqrt{t}}{dt} \cdot dt = \frac{1}{2} \cdot \frac{1}{\sqrt{t}} \cdot dt$$  \hspace{1cm} \text{Formel 9}

Die nachfolgenden Regressionsgeraden wurden nur für vollständige Messungen durchgeführt und der Wₚ-Wert wurde auch nur für diese Messungen bestimmt. Messungen die nach einiger Zeit undicht geworden sind, haben nicht dieselbe Aussagekraft und würden das Ergebnis verfälschen.
5.1.5 Auswertung und Beurteilung der Messergebnisse

Zur Auswertung der Messergebnisse wird zunächst die aufgesaugte Wassermenge pro m² über der Wurzel aus dem Zeitpunkt der Erfassung der Messwerte graphisch aufgetragen.

Sodann wird eine Regressionsgerade nach dem „Fehler in den Variablen Modell“ bzw. als Y-aus-X Regression so an die Messwerte angepasst, bis die Summe aus den quadratischen Fehlern zwischen den Messwerten und den Funktionswerten der Regressionsgerade minimal wird. Der Wasseraufnahmekoeffizient \( W_w \) ergibt sich dann als der Schätzwert der Steigung der Regressionsgeraden \( b'_Y \). Der angegebene Fehler der Steigung der Regressionsgeraden berechnet sich aus dem Schätzwert der empirischen Varianz der Steigung der Regressionsgeraden und der t-Verteilung für das 95-%-Vertrauensintervall.

Die detaillierten Berechnungen in Form von Tabellen und Diagramme zur Auswertung der einzelnen Messreihen sind im Anhang, unter Punkt A.1, abgelegt. In den Tabellen sind die, für die Ermittlung der Regressionsgeraden, aufgenommenen Messwerte der entsprechenden Fassade in Evilard aufgelistet. Die Diagramme zeigen die entsprechenden Regressionsgeraden zur Ermittlung des Wasseraufnahmekoeffizienten \( W_w \).

Die Messwerte und deren Mittelwert sind in der Grafik 1, Tabelle 4 und 5 zusammengestellt.

Grafik 1: Darstellung der Messwerte des Wasseraufnahmekoeffizienten \( W_w \) und deren Mittelwert an der Nord- und Westfassade, inkl. dem 95-%-Vertrauensintervall.
Tabelle 4: Zusammenstellung der Messwerte des Wasseraufnahmekoeffizienten $W_w$ mit dem Karsten’schen Prüfröhrchen an der Nordfassade. Die Fehler stellen das 95-%-Vertrauensintervall (DW$_{w}$) dar.

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Datum</th>
<th>Umfang</th>
<th>$W_w$-Wert</th>
<th>DW$_{w}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfung N4</td>
<td>12.08.2015</td>
<td>17</td>
<td>2.0</td>
<td>0.12</td>
</tr>
<tr>
<td>Prüfung N5</td>
<td>17</td>
<td>3.9</td>
<td>± 0.23</td>
<td></td>
</tr>
<tr>
<td>Prüfung N6</td>
<td>17</td>
<td>1.6</td>
<td>± 0.14</td>
<td></td>
</tr>
<tr>
<td>Prüfung N7</td>
<td>17</td>
<td>0.9</td>
<td>± 0.11</td>
<td></td>
</tr>
<tr>
<td>Prüfung N9</td>
<td>18</td>
<td>3.6</td>
<td>± 0.27</td>
<td></td>
</tr>
<tr>
<td>Prüfung N10</td>
<td>17</td>
<td>1.9</td>
<td>± 0.26</td>
<td></td>
</tr>
<tr>
<td>Prüfung N11</td>
<td>13</td>
<td>6</td>
<td>± 1.4</td>
<td></td>
</tr>
<tr>
<td>Prüfung N12</td>
<td>15</td>
<td>4.1</td>
<td>± 0.44</td>
<td></td>
</tr>
<tr>
<td>Prüfung N13</td>
<td>26.08.2015</td>
<td>17</td>
<td>1.7</td>
<td>± 0.25</td>
</tr>
<tr>
<td>Prüfung N14</td>
<td>17</td>
<td>3.8</td>
<td>± 0.20</td>
<td></td>
</tr>
<tr>
<td>Prüfung N15</td>
<td>17</td>
<td>2.3</td>
<td>± 0.14</td>
<td></td>
</tr>
<tr>
<td>Prüfung N16</td>
<td>17</td>
<td>1.4</td>
<td>± 0.18</td>
<td></td>
</tr>
</tbody>
</table>

Mittelwert 16.58 ± 3.4

Tabelle 5: Zusammenstellung der Messwerte des Wasseraufnahmekoeffizienten $W_w$ mit dem Karsten’schen Prüfröhrchen an der Westfassade. Die Fehler stellen das 95-%-Vertrauensintervall (DW$_{w}$) dar.

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Datum</th>
<th>Umfang</th>
<th>$W_w$-Wert</th>
<th>DW$_{w}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfung W3</td>
<td>28.08.2015</td>
<td>14</td>
<td>4.3</td>
<td>± 0.45</td>
</tr>
<tr>
<td>Prüfung W11</td>
<td>13</td>
<td>4.7</td>
<td>± 0.36</td>
<td></td>
</tr>
<tr>
<td>Prüfung W18</td>
<td>18</td>
<td>3.2</td>
<td>± 0.18</td>
<td></td>
</tr>
<tr>
<td>Prüfung W19</td>
<td>18</td>
<td>3.6</td>
<td>± 0.30</td>
<td></td>
</tr>
<tr>
<td>Prüfung W22</td>
<td>18</td>
<td>3.2</td>
<td>± 0.15</td>
<td></td>
</tr>
<tr>
<td>Prüfung W26</td>
<td>04.09.2015</td>
<td>17</td>
<td>5.2</td>
<td>± 0.30</td>
</tr>
<tr>
<td>Prüfung W27</td>
<td>17</td>
<td>4.7</td>
<td>± 0.36</td>
<td></td>
</tr>
<tr>
<td>Prüfung W28</td>
<td>17</td>
<td>2.7</td>
<td>± 0.15</td>
<td></td>
</tr>
<tr>
<td>Prüfung W32</td>
<td>16</td>
<td>5.4</td>
<td>± 0.27</td>
<td></td>
</tr>
<tr>
<td>Prüfung W33</td>
<td>16</td>
<td>3.0</td>
<td>± 0.18</td>
<td></td>
</tr>
<tr>
<td>Prüfung W38</td>
<td>16</td>
<td>4.1</td>
<td>± 0.20</td>
<td></td>
</tr>
</tbody>
</table>

Mittelwert 16.36 ± 2.1

In der Grafik 1, sowie der Tabelle 4 und Tabelle 5 ist deutlich erkennbar, dass die über die Regressionsgerade errechneten Wasseraufnahmekoeffizienten $W_w$ der einzelnen Messungen zwischen den Werten 0.9 kg/(m$^2$$\sqrt{h}$) und 6 kg/(m$^2$$\sqrt{h}$) liegen. Die Fehler, also das 95-%-Vertrauensintervall, der einzelnen Messungen sind relativ klein, was bedeutet, dass die einzelnen
Messungen sich untereinander nicht signifikant unterscheiden. Lediglich die Prüfung N11 in der Tabelle 4 weist einen grossen Fehler auf und liegt signifikant über den Wasseraufnahmekoeffizienten $W_w$ der anderen Prüfungen. Konsultiert man die Auswertung und Regressionsgerade eben dieser Prüfung N11 im Anhang unter dem Punkt A.1.1, ist erkennbar, dass die aufgenommenen Messwerte zwischen 0.56 $\sqrt{h}$ und 0.6 $\sqrt{h}$ einen deutlichen Sprung machen und somit die Regressionsgerade, bzw. den Wasseraufnahmekoeffizienten $W_w$, massgeblich beeinflussen. Dieser Sprung der Messwerte könnte auf eine Fehlstelle hinweisen. Bei der genaueren Untersuchung der Messung und der Prüffläche mittels aufgenommen Fotos, können jedoch keine visuell sichtbaren Fehlstellen, wie unter dem Punkt 5.1.2 beschrieben, gefunden werden. Somit kann die Prüfung N11 nicht als ungültige Messung aus der Messreihe ausgeschlossen werden.

Obwohl die einzelnen Prüfungen untereinander so streuen, dass die 95 %-Vertrauensintervalle der beiden Mittelwerte zwischen 2.1 kg/(m² $\sqrt{h}$) und 3.4 kg/(m² $\sqrt{h}$) zu liegen kommen, kann aufgrund der grossen Anzahl Prüfungen ($N_1=12$, $N_2=11$) und Differenz der beiden Mittelwerte ($\Delta \mu=1$ kg/(m² $\sqrt{h}$)) auf einen signifikanten Unterschied der beiden Werte geschlossen werden (Nordfassade mit $(3 \pm 3.4)$ kg/(m² $\sqrt{h}$) zu Westfassade mit $(4 \pm 2.1)$ kg/(m² $\sqrt{h}$))(Signifikanztest 1).

Die relativ grossen 95 %-Konfidenzintervalle der beiden Mittelwerte, bzw. die grosse Streuung der einzelnen Prüfungen, könnten folgendermassen erklärt werden:


Für das Vorhandensein solcher lokalen Feuchtestellen sprechen ebenfalls die unterschiedlich gemessenen Fassadenfeuchten mittels Feuchtemessgerät, [10] in Tabelle 1, die zwischen 60 und 80 Digits liegen.

Grundsätzlich nehmen all diese oben erwähnten Effekte mit zunehmender Größe der Prüffläche ab, womit für das Karsten'schen Prüfröhrchen die Prüffläche sich als wesentlicher Nachteil dieser Prüfmethode herausstellt.

Die allgemein hohen Werte können demnach durch die geringe Prüffläche der Röhrchen erklärt werden. So ist der Umfang der Röhrchen im Verhältnis zu dessen Fläche um einiges größer als bei der Franke'schen Prüfplatte oder beim Wasseraufnahmemessgerät. Somit sind auch die Randeffekte, sprich der Verlust in der dritten Dimension, also in der Ebene des Aussenputzes, über den Umfang bei den Karsten'schen Röhrchen entsprechend größer als bei den anderen zwei Messverfahren. Folglich resultiert ein höherer Wasseraufnahmekoeffizient $W_w$.

Signifikanztest 1: Karsten'sche Prüfröhrchen Evilard

Die gewichtete Standardabweichung $\sigma_\Delta$, berechnet als gewichtetes Mittel der beiden Stichprobenvarianzen $\sigma_1^2$ und $\sigma_2^2$, ergibt sich zu

\[
\sigma_\Delta = \sqrt{\frac{\sigma_1^2}{N_1} + \frac{\sigma_2^2}{N_2}}
\]

Formel 10

\[
\sigma_\Delta = \sqrt{\frac{2.24}{12} + \frac{0.86}{11}} = 0.52
\]

Die Differenz der beiden Mittelwerte ergibt sich aus

\[
\Delta = |\mu_2 - \mu_1|
\]

Formel 11

\[
\Delta = |2.8 - 4.0| = 1.2
\]

Der Prüfwert $t$ berechnet sich dann als

\[
t(p; f) = t(0.05; 21) = 2.08
\]

Formel 12

mit dem Signifikanzniveau von 0.05 und den Freiheitsgraden

\[
f = N_1 + N_2 - 2 = 12 + 11 - 2 = 21
\]

Formel 13
Die Prüfgröße ergibt sich als Dividend und wird mit dem Prüfwert $t$ verglichen. Ist die Prüfgröße größer als der Prüfwert kann mit einer Konfidenz von 95% behauptet werden, dass einen Unterschied der Wasseraufnahmefähigkeit der beiden Fassaden besteht.

$$\frac{\Delta}{\sigma_0} \leq t(p; f)$$

$$\frac{1.2}{0.52} \leq t(p; f)$$

Formel 14

$2.4 > 2.08$

$\rightarrow$ Unterscheiden sich signifikant
5.2 Messung mittels Prüfplatte nach Franke

5.2.1 Dokumentation der Messung


Abbildung 11: Zwei parallel laufende Messungen an der Nordfassade.

Abbildung 12: Detailaufnahme der Messung N4 an der Nordfassade.

Auf der Abbildung 13 sind die Messpunkte des 29.04.2015 an der Westfassade markiert. Abbildung 14 zeigt die Messung „W1_stud“ an der Westfassade, die durch Studenten der BFH durchgeführt wurde.

Abbildung 13: Messpunkte des 29.04.2015 an der Westfassade.

Abbildung 14: Messung W1_stud an der Westfassade.
5.2.2 Durchführung der Messung


5.2.3 Aufgezeichnete Messdaten

Nachfolgende Tabelle 6, zeigt die aufgenommenen Messwerte mittels Franke'sche Prüfplatte an der Nordfassade. Tabelle 7 zeigt die Messwerte der Westfassade.

Tabelle 6: Ergebnisse der Messungen mittels Franke'sche Prüfplatten an der Nordfassade in Evilard.

<table>
<thead>
<tr>
<th>n</th>
<th>t</th>
<th>√t (x_i)</th>
<th>29.04.15</th>
<th></th>
<th>12.08.15</th>
<th></th>
<th>26.08.15</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Prüfung N1</td>
<td>Prüfung N2</td>
<td>Prüfung N1</td>
<td>Prüfung N2</td>
<td>Prüfung N3</td>
<td>Prüfung N4</td>
</tr>
<tr>
<td>----</td>
<td>-----</td>
<td>----------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>kg/m²</td>
<td>kg/m²</td>
<td>kg/m²</td>
<td>kg/m²</td>
<td>kg/m²</td>
<td>kg/m²</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td></td>
<td>0.05</td>
<td>0.14</td>
<td>0.05</td>
<td>0.00</td>
<td>0.10</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td></td>
<td>0.10</td>
<td>0.19</td>
<td>0.10</td>
<td>0.00</td>
<td>0.16</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td></td>
<td>0.14</td>
<td>0.24</td>
<td>0.14</td>
<td>0.00</td>
<td>0.17</td>
<td>0.08</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td></td>
<td>0.14</td>
<td>0.24</td>
<td>0.19</td>
<td>0.00</td>
<td>0.21</td>
<td>0.14</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td></td>
<td>0.19</td>
<td>0.24</td>
<td>-</td>
<td>-</td>
<td>0.25</td>
<td>0.18</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td></td>
<td>0.24</td>
<td>0.29</td>
<td>-</td>
<td>-</td>
<td>0.27</td>
<td>0.21</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td></td>
<td>0.29</td>
<td>0.29</td>
<td>0.24</td>
<td>0.00</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td></td>
<td>0.29</td>
<td>0.34</td>
<td>-</td>
<td>-</td>
<td>0.32</td>
<td>0.27</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td></td>
<td>0.34</td>
<td>0.34</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td></td>
<td>0.34</td>
<td>0.34</td>
<td>0.34</td>
<td>0.05</td>
<td>0.35</td>
<td>0.34</td>
</tr>
<tr>
<td>11</td>
<td>12</td>
<td></td>
<td>0.45</td>
<td></td>
<td>0.34</td>
<td>0.10</td>
<td>0.38</td>
<td>0.40</td>
</tr>
<tr>
<td>12</td>
<td>15</td>
<td></td>
<td>0.50</td>
<td>0.39</td>
<td>0.43</td>
<td>0.10</td>
<td>0.43</td>
<td>0.49</td>
</tr>
<tr>
<td>13</td>
<td>18</td>
<td></td>
<td>0.55</td>
<td></td>
<td></td>
<td>0.43</td>
<td>0.14</td>
<td>-</td>
</tr>
<tr>
<td>14</td>
<td>20</td>
<td></td>
<td>0.58</td>
<td>0.39</td>
<td>0.48</td>
<td>0.19</td>
<td>0.47</td>
<td>0.60</td>
</tr>
<tr>
<td>15</td>
<td>25</td>
<td></td>
<td>0.65</td>
<td></td>
<td>0.58</td>
<td>0.24</td>
<td>0.51</td>
<td>0.71</td>
</tr>
<tr>
<td>16</td>
<td>30</td>
<td></td>
<td>0.71</td>
<td></td>
<td>0.58</td>
<td>0.29</td>
<td>0.55</td>
<td>-</td>
</tr>
<tr>
<td>17</td>
<td>35</td>
<td></td>
<td>0.76</td>
<td></td>
<td></td>
<td>0.34</td>
<td>0.58</td>
<td>-</td>
</tr>
<tr>
<td>18</td>
<td>45</td>
<td></td>
<td>0.87</td>
<td></td>
<td></td>
<td></td>
<td>0.72</td>
<td>0.39</td>
</tr>
<tr>
<td>19</td>
<td>55</td>
<td></td>
<td>0.96</td>
<td></td>
<td></td>
<td></td>
<td>0.87</td>
<td>-</td>
</tr>
</tbody>
</table>
Tabelle 7: Ergebnisse der Messungen mittels Franke'sche Prüfplatten an der Westfassade in Evilard.

<table>
<thead>
<tr>
<th>n</th>
<th>t</th>
<th>\sqrt{t} (x)</th>
<th>29.04.15</th>
<th></th>
<th></th>
<th></th>
<th>28.08.15</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Prüfung W2_stud</td>
<td>Prüfung W1</td>
<td>Prüfung W2</td>
<td>Prüfung W3</td>
<td>Prüfung W5</td>
<td>Prüfung W6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>min</td>
<td>\sqrt{h} (kg/m²)</td>
<td>kg/m²</td>
<td>kg/m²</td>
<td>kg/m²</td>
<td>kg/m²</td>
<td>kg/m²</td>
<td>kg/m²</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0.13</td>
<td>0.05</td>
<td>0.09</td>
<td>0.14</td>
<td>0.09</td>
<td>0.11</td>
<td>0.05</td>
<td>0.05</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>0.18</td>
<td>0.20</td>
<td>0.15</td>
<td>0.22</td>
<td>0.16</td>
<td>0.13</td>
<td>0.08</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>0.22</td>
<td>0.24</td>
<td>0.21</td>
<td>0.28</td>
<td>0.20</td>
<td>0.13</td>
<td>0.10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>0.26</td>
<td>0.34</td>
<td>0.26</td>
<td>0.35</td>
<td>0.26</td>
<td>0.29</td>
<td>0.22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>0.29</td>
<td>0.39</td>
<td>0.31</td>
<td>0.41</td>
<td>0.30</td>
<td>0.45</td>
<td>0.22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>0.32</td>
<td>0.44</td>
<td>0.36</td>
<td>0.46</td>
<td>0.33</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>0.34</td>
<td>0.49</td>
<td>0.39</td>
<td>0.49</td>
<td>0.38</td>
<td>0.45</td>
<td>0.23</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>0.37</td>
<td>0.54</td>
<td>0.44</td>
<td>0.55</td>
<td>0.41</td>
<td>0.47</td>
<td>0.29</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>0.39</td>
<td>0.64</td>
<td>0.49</td>
<td>0.60</td>
<td>0.45</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>0.41</td>
<td>0.64</td>
<td>0.53</td>
<td>0.63</td>
<td>0.48</td>
<td>0.58</td>
<td>0.32</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>11</td>
<td>0.45</td>
<td>0.65</td>
<td>0.61</td>
<td>0.71</td>
<td>0.54</td>
<td>0.62</td>
<td>0.37</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>12</td>
<td>0.48</td>
<td>0.69</td>
<td>0.78</td>
<td>0.61</td>
<td>0.67</td>
<td>0.49</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>13</td>
<td>0.50</td>
<td>0.83</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>14</td>
<td>0.52</td>
<td>0.76</td>
<td>0.85</td>
<td>0.67</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>15</td>
<td>0.53</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.73</td>
<td>0.53</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>16</td>
<td>0.55</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.85</td>
<td>0.92</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>17</td>
<td>0.56</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.82</td>
<td>0.57</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>18</td>
<td>0.58</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.92</td>
<td>0.99</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>19</td>
<td>0.61</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.93</td>
<td>0.75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>20</td>
<td>0.62</td>
<td>1.08</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>21</td>
<td>0.65</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>22</td>
<td>0.67</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>23</td>
<td>0.68</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>24</td>
<td>0.71</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.02</td>
<td>0.83</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>25</td>
<td>0.74</td>
<td>1.28</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>26</td>
<td>1.00</td>
<td></td>
</tr>
</tbody>
</table>

5.2.4 Messunsicherheiten

5.2.4.1 Prüffläche der Franke'schen Platte

Die Messunsicherheit der Rechtecklängen der Prüffläche, $h$ und $b$, beträgt

$$h = (8,3 \pm 0,2) \text{ cm}$$

Formel 15

$$b = (25 \pm 0,2) \text{ cm}$$

Formel 16

Die Prüffläche $A$ berechnet sich wie folgt:

$$A = h \cdot b$$

Formel 17

Mit dem Messfehler der Längen, $dh$ und $db$, wird die Messunsicherheit der Prüffläche $dA$ mit Formel 1 bestimmt:

$$dA = \sqrt{\left(\frac{\partial A}{\partial h} \cdot dh\right)^2 + \left(\frac{\partial A}{\partial b} \cdot db\right)^2} = \sqrt{(b \cdot dh)^2 + (h \cdot db)^2} = \sqrt{(8,3 \text{ cm} \cdot 0,2 \text{ cm})^2 + (25 \text{ cm} \cdot 0,2 \text{ cm})^2} = 5,3 \text{ cm}^2$$

Formel 18

Damit ergibt sich die Prüffläche zu

$$A = (207 \pm 5,3) \text{ cm}^2$$

Formel 19

5.2.4.2 Wasserstromdichte

Die aufgesaugte Wassermenge, die pro $m^2$ bis zu einer bestimmten Zeit $t$ aufgenommen wird, kann als Wasserstromdichte $\Phi$ dargestellt werden:

$$\phi = \frac{m(t)}{A}$$

Formel 20

Die Messunsicherheit der Prüffläche $A$ ergibt sich nach der Formel 3.
Die Ablesegenaugigkeit der Waage [5] beträgt 0.1 g. Damit beträgt die Messunsicherheit der Massenbestimmung

\[ dm = \pm 1 \times 10^{-4} \, kg \]  \hspace{1cm} \text{Formel 21}

Die Messunsicherheit der Zeitmessung beträgt 1 s.

Damit bestimmt sich die Messunsicherheit der Wasserstromdichte zu

\[ d\Phi = \sqrt{\left(\frac{\partial \Phi}{\partial m} \cdot dm\right)^2 + \left(\frac{\partial \Phi}{\partial A} \cdot dA\right)^2} \]  \hspace{1cm} \text{Formel 22}

5.2.4.3 Wurzel aus der Zeit

Die Genauigkeit der Bestimmung des Messzeitpunktes t beträgt \( dt = 2 \) s. Um eine lineare Regressionsgerade an die Messwerte anpassen zu können, werden diese über der Wurzel aus dem Messzeitpunkt aufgetragen.

\[ d\sqrt{t} = \frac{\partial \sqrt{t}}{\partial t} \cdot dt = \frac{1}{2} \cdot \frac{1}{\sqrt{t}} \cdot dt \]  \hspace{1cm} \text{Formel 23}

Die nachfolgenden Regressionsgeraden wurden nur für vollständige Messungen durchgeführt und der \( W_w \)-Wert wurde auch nur für diese Messungen bestimmt. Messungen die nach einiger Zeit undicht geworden sind, haben nicht dieselbe Aussagekraft und würden das Ergebnis verfälschen.

5.2.5 Auswertung und Beurteilung der Messergebnisse

Zur Auswertung der Messergebnisse wird zunächst die aufgesaugte Wassermenge pro m² über der Wurzel aus dem Zeitpunkt der Erfassung der Messwerte graphisch aufgetragen.

Sodann wird eine Regressionsgerade nach dem „Fehler in den Variablen Modell“ bzw. als Y-aus-X Regression so an die Messwerte angepasst, bis die Summe aus den quadratischen Fehlern zwischen den Messwerten und den Funktionswerten der Regressionsgerade minimal wird. Der Wasseraufnahmekoeffizient \( W_w \) ergibt sich dann als der Schätzwert der Steigung der Regressionsgeraden \( b'_{yw} \). Der angegebene Fehler der Steigung der Regressionsgeraden berechnet sich aus dem Schätzwert der empirischen Varianz der Steigung der Regressionsgeraden und der t-Verteilung für das 95 %-Vertrauensintervall.

Die detaillierten Berechnungen in Form von Tabellen und Diagramme zur Auswertung der einzelnen Messreihen sind im Anhang, unter dem Punkt A.2, abgelegt. In den Tabellen sind die,
für die Ermittlung der Regressionsgeraden, aufgenommenen Messwerte der entsprechenden Fassade in Evilard aufgelistet. Die Diagramme zeigen die entsprechenden Regressionsgeraden zur Ermittlung des Wasseraufnahmekoeffizienten $W_w$.

Die Messwerte mit der Franke'schen Prüfplatte sind in der Grafik 2, Tabelle 8 und Tabelle 9 zusammengestellt.

Tabelle 8: Zusammenstellung der Messwerte des Wasseraufnahmekoeffizienten $W_w$ mit der Franke’sche Prüfplatte an der Nordfassade. Die Fehler stellen das 95 %-Vertrauensintervall dar. Die Messung N4 wird aufgrund einer Leckage von den weiteren Auswertungen ausgeschlossen und ist somit nicht in Mittelwert enthalten.

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Datum</th>
<th>Umfang</th>
<th>$W_w$-Wert</th>
<th>$DW_w$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfung N1_stud</td>
<td>29.04.2015</td>
<td>12</td>
<td>0.9</td>
<td>± ±0.18</td>
</tr>
<tr>
<td>Prüfung N2_stud</td>
<td>28.04.2015</td>
<td>12</td>
<td>0.74</td>
<td>± ±0.076</td>
</tr>
<tr>
<td>Prüfung N1</td>
<td>12.08.2015</td>
<td>14</td>
<td>0.96</td>
<td>± ±0.053</td>
</tr>
<tr>
<td>Prüfung N2</td>
<td>12.08.2015</td>
<td>14</td>
<td>0.6</td>
<td>± ±0.10</td>
</tr>
<tr>
<td>Prüfung N3</td>
<td>26.08.2015</td>
<td>14</td>
<td>0.76</td>
<td>± ±0.052</td>
</tr>
<tr>
<td>Prüfung N4</td>
<td>26.08.2015</td>
<td>14</td>
<td>1.48</td>
<td>± ±0.054</td>
</tr>
<tr>
<td>Mittelwert</td>
<td></td>
<td>13,20</td>
<td>0,8</td>
<td>± ±0,39</td>
</tr>
</tbody>
</table>

Tabelle 9: Zusammenstellung der Messwerte des Wasseraufnahmekoeffizienten $W_w$ mit der Franke’sche Prüfplatte an der Westfassade. Die Fehler stellen das 95 %-Vertrauensintervall dar.

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Datum</th>
<th>Umfang</th>
<th>$W_w$-Wert</th>
<th>$DW_w$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfung W2_stud</td>
<td>29.04.2015</td>
<td>12</td>
<td>2.0</td>
<td>± ±0.12</td>
</tr>
<tr>
<td>Prüfung W1</td>
<td>28.08.2015</td>
<td>15</td>
<td>1,9</td>
<td>± ±0.14</td>
</tr>
<tr>
<td>Prüfung W2</td>
<td>28.08.2015</td>
<td>19</td>
<td>2,01</td>
<td>± ±0.048</td>
</tr>
<tr>
<td>Prüfung W3</td>
<td>28.08.2015</td>
<td>13</td>
<td>1,5</td>
<td>± ±0.079</td>
</tr>
<tr>
<td>Prüfung W5</td>
<td>28.08.2015</td>
<td>16</td>
<td>1,8</td>
<td>± ±0.13</td>
</tr>
<tr>
<td>Prüfung W6</td>
<td>28.08.2015</td>
<td>16</td>
<td>1,5</td>
<td>± ±0,17</td>
</tr>
<tr>
<td>Mittelwert</td>
<td></td>
<td>15,17</td>
<td>1,8</td>
<td>± ±0,58</td>
</tr>
</tbody>
</table>

Auf der Grafik 2, sowie in der Tabelle 8 und Tabelle 9 ist erkennbar, dass die über die Regressionsgerade errechneten Wasseraufnahmekoeffizienten $W_w$ der einzelnen Messungen sich zwischen den Werten 0.6 kg/(m$^2$√h) und 2 kg/(m$^2$√h) befinden. Die Werte der Franke’schen Prüfplatte liegen im Vergleich zu den Werten der Karsten’schen Prüfröhrchen relativ nah zusammen. Weshalb sich, aufgrund der 95 %-Vertrauensintervalle der einzelnen Messungen, die zwischen 0,052 kg/(m$^2$√h)und 0,19 kg/(m$^2$√h) liegen, die einzelnen Messungen nicht signifikant unterscheiden.

Die Prüfung N4 in der Tabelle 8 weist einen verhältnismässig hohen Wasseraufnahmekoeffizienten $W_w$ auf. Konsultiert man die Auswertung und Regressionsgerade eben dieser Prüfung N4 im Anhang unter dem Punkt A.2.1, ist erkennbar, dass die Messreihe erst bei 3 Minuten anfängt und bereits nach 25 Minuten aufhört, was auf eine fehlerhafte Messung hindeuten könnte. Dieser Verdacht bestätigt ebenfalls das Messprotokoll, welches aussagt, dass die Messung einerseits auf der Fläche der letzten Wasseraufnahmemessgerät Messung...
durchgeführt wurde und andererseits nach 20 Minuten ein Leck aufwies. Aufgrund dessen wird die Messung N4 für die Berechnung des Mittelwertes und die weitere Auswertung ausgeschlossen.

Dieser Extremwert der Messung N4 hat einen Einfluss auf die Höhe des Mittelwertes der Nordfassade. Trotz den grossen 95 %-Vertrauensintervalle der beiden Mittelwerte liegen die gemittelten Wasseraufnahmekoeffizienten $W_w$ der Nord- und Westfassade so weit auseinander, dass auf einen signifikanten Unterschied der beiden Fassadenausrichtungen geschlossen werden kann (Nordfassade mit $(0.9 \pm 0.39)$ kg/(m²·h) zu Westfassade mit $(1.8 \pm 0.58)$ kg/(m²·h)).


Abbildung 17: Beim Ablösen des Prüfgerätes bleibt an der Nordfassade der Farbanstrich weitestgehend in Takt.

Abbildung 18: An der Westfassade löst sich einen Grossteil des Farbanstriches vom Aussenputz.

Vorteil der Franke'schen Prüfplatte ist die grössere Prüffläche als jene der Karsten'schen Prüfröhrchen. Dies führt dazu, dass die unter 5.1.5 beschriebenen Effekte einen geringeren Einfluss auf die Messung ausüben, sich die Streuung unter den einzelnen Messreihen verringert und davon ausgegangen werden kann, dass die Werte eher den Zustand der gesamten Fassade beschreiben.
5.3 Messung mittels Wasseraufnahmemessgerät

5.3.1 Dokumentation der Messung


Abbildung 19: Die Messvorrichtung und das installierte WAM an der Westfassade

Abbildung 20: Das Aufnehmen der lichten Höhe und Breite für die Ermittlung der Prüffläche an der Nordfassade.

5.3.2 Durchführung der Messung

5.3.3 Aufgezeichnete Messdaten


Grafik 3: Daten der Messung mittels Wasseraufnahmemessgerät an der Nordfassade, inkl. der Regressionsgerade nach dem „Fehler in den Variablen Modell“.

Grafik 4: Messdaten der Messung mittels Wasseraufnahmemessgerät an der Westfassade, inkl. der Regressionsgerade nach dem „Fehler in den Variablen Modell“.
5.3.4 Fehlerrechnung


5.3.4.1 Prüffläche

Durch das Aufbringen der Knetmasse wird ein Teil der originalen Prüffläche abgedeckt. Um die hierdurch entstehende Messunsicherheit abzuschätzen, wird die lichte Höhe und Breite zwischen den Knetstreifen mehrfach bestimmt.


Die Messunsicherheit der Rechtecklängen der Prüffläche, h und b, beträgt

\[
h = (27,9 \pm 0,57 \ (1 \sigma)) \, cm
\]
\[
b = (38,1 \pm 0,48 \ (1 \sigma)) \, cm
\]

Die Fehler bezeichnen 1σ. Die Prüffläche A berechnet sich wie folgt:

\[
A = h \cdot b
\]

Die Messunsicherheit der Prüffläche dA mit der Formel 1 zunächst für die Messung an der Nordfassade bestimmt:

\[
dA = \sqrt{\left(\frac{\partial A}{\partial h} \cdot dh\right)^2 + \left(\frac{\partial A}{\partial b} \cdot db\right)^2} = \sqrt{(b \cdot dh)^2 + (h \cdot db)^2}
\]
\[
= \sqrt{(38,1 \, cm \cdot 0,57 \, cm)^2 + (27,9 \, cm \cdot 0,48 \, cm)^2}
\]
\[
= 26 \, cm^2
\]
Damit ergibt sich die Prüffläche $A$ an der Nordfassade zu

$$A = (1'060 \pm 26 \text{ (1 )}) \text{ cm}^2$$  \hspace{1cm} \text{Formel 28}

5.3.4.2 Wasserstromdichte

Die aufgesaugte Wassermenge, die pro $m^2$ bis zu einer bestimmten Zeit $t$ aufgenommen wird, kann als Wasserstromdichte $\Phi$ dargestellt werden:

$$\Phi = \frac{m(t)}{A}$$  \hspace{1cm} \text{Formel 29}

Die Messunsicherheit der Prüffläche $A$ ergibt sich nach der Formel 3.

Die Ablesegenauigkeit der Waage [6] beträgt 1 g. Damit beträgt die Messunsicherheit

$$dm = \pm 1 \cdot 10^{-3} \text{ kg}$$  \hspace{1cm} \text{Formel 30}

Die Messunsicherheit der Zeitmessung beträgt 1 s.

Damit bestimmt sich die Messunsicherheit der Wasserstromdichte zu

$$d\Phi = \sqrt{\left(\frac{\partial \Phi}{\partial m} \cdot dm\right)^2 + \left(\frac{\partial \Phi}{\partial A} \cdot dA\right)^2}$$  \hspace{1cm} \text{Formel 31}

5.3.5 Auswertung und Beurteilung der Messergebnisse

Zur Auswertung der Messergebnisse wird zunächst die aufgesaugte Wassermenge pro $m^2$ über der Wurzel aus dem Zeitpunkt der Erfassung der Messwerte graphisch aufgetragen.

Sodann wird eine Regressionsgerade nach dem „Fehler in den Variablen Modell“ solange an die Messwerte angepasst, bis die Summe aus den quadratischen Fehlern zwischen den Messwerten und den Funktionswerten der Regressionsgeraden minimal wird. Der Wasseraufnahmekoeffizient $W_w$ ergibt sich dann als der Schätzwert der Steigung der Regressionsgeraden $b'_{yx}$. Der angegebene Fehler der Steigung der Regressionsgeraden berechnet sich aus dem Schätzwert der empirischen Varianz der Steigung der Regressionsgeraden und der t-Verteilung für das 95 %-Vertrauensintervall.
Die detaillierten Berechnungen in Form von Tabellen zur Auswertung der einzelnen Messreihen sind im Anhang, unter dem Punkt A.3, abgelegt. In den Tabellen sind die, für die Ermittlung der Regressionsgeraden, aufgenommenen Messwerte der entsprechenden Fassade in Evilard aufgelistet. Die Grafik 3 und Grafik 4 unter 5.3.3 zeigen die entsprechenden Regressionsgeraden zur Ermittlung des Wasseraufnahmekoeffizienten $W_w$.


<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Datum</th>
<th>Umfang</th>
<th>$W_w$-Wert</th>
<th>$DW_w$</th>
</tr>
</thead>
<tbody>
<tr>
<td>WAM N1</td>
<td>14.08.2015</td>
<td>234</td>
<td>0.95</td>
<td>± 0.010</td>
</tr>
<tr>
<td>WAM W1</td>
<td></td>
<td>234</td>
<td>1.39</td>
<td>± 0.012</td>
</tr>
</tbody>
</table>

Das Fehlverhalten des Laptops beruht auf den Bildschirmschoner, welcher in regelmässigen Abständen die WAM Messung unterbrach und somit nur vereinzelte und voneinander unabhängige Messpunktewolken zur Auswertung zuliess.

Die Undichtheit ist auf das sich Lösen der Knetmasse von der Fassade zurückzuführen, was zu einem verfälschten Wasserverlust führt.

Zwei der insgesamt sechs WAM Messungen wurden wenige Minuten nach und an der exakt selben Stelle der vorigen Messungen durchgeführt. Dadurch sollte getestet werden, wie sich die Wasseraufnahmeeigenschaften des Aussenputzes im durchnässten Zustand verhalten. Da diese Messungen nicht repräsentativ für den normalen Zustand der Fassaden sind, wurden sie als nicht aussagekräftig bewertet.

Auf der Grafik 3 und Grafik 4 unter 5.3.3 ist erkennbar, dass durch die computergesteuerte Messung des Wasseraufnahmemessgerätes so viele Messwerte zusammenkommen, dass die Bildung einer Regressionsgerade, bzw. Ermittlung des Wasseraufnahmekoeffizienten $W_w$ relativ genau ausfällt. Der kleine Fehler wird über den 95-%-Konfidenzintervall in der Tabelle 10 ersichtlich, der bei beiden Messungen im Bereich der zweiten Komastelle liegt (Nordfassade mit $(0.95 \pm 0.014)$ kg/(m$^2$/h) und Westfassade mit $(1.39 \pm 0.015)$ kg/(m$^2$/h)). Aufgrund dieses minimalen Fehlers kann auf einen signifikanten Unterschied zwischen den beiden
Wasseraufnahmekoeffizienten $W_w$ der Nord- und Westfassade, wie schon bei der Franke'sche Prüfplatte, geschlossen werden.

Die ersten sechs Messpunkte wurden aufgrund des anfänglichen Einpendelns des Wasserkreislaufes von den Auswertungen ausgeschlossen.

Gleich der Franke'sche Prüfplatte wird bei einer genaueren Betrachtung und Gegenüberstellung der beiden Fassaden klar, was die mögliche Erklärung für die Differenz sein könnte. So führt die visuell erkennbare Verwitterung der Fassadenoberfläche zu einer Erhöhung des Wasseraufnahmekoeffizienten $W_w$ der Westfassade.

Nebst dem Vorteil der grösseren Prüffläche gegenüber jener der Karsten'schen Prüfröhrchen, bringt das computerunterstützte Wasseraufnahmegerät minimale statistische Fehler durch Messunsicherheiten mit sich. Auf den Vorteil einer grösseren Prüffläche wurde bereits unter 5.1.5 detailliert eingegangen. Aus diesen Gründen verringert sich die Streuung unter den einzelnen Messungen und es kann davon ausgegangen werden, dass die Werte ähnlich den Zustand der gesamten Fassade beschreiben, wie dies bereits bei der Prüfplatte der Fall war.

5.4 Labormessungen

5.4.1 Dokumentation der Messung

Der gesamte Versuch wird in einer Klimakammer bei nach der Norm EN ISO 15148:2002 vorgeschriebenen Klimabedingungen (23 °C/50 % rel. Luftfeuchte) durchgeführt.

Insgesamt wurden am Objekt sieben Bohrkerne genommen. Wie die Abbildung 21 zeigt, ist der Wandaufbau eher traditioneller Art. D.h. die Mischung des Putzes ist sehr kalkhaltig, wobei ein kleiner Teil, ca. 10 %, Zement beigemischt wurde. Teils findet man einzelne Stücke von Mauerziegel als Füllmaterial vor (Abbildung 21).


Nach dem Wachsanstrich und der Konditionierung der Proben auf Massekonstanz werden die Probekörper mit Hilfe einer Waage, [6] in Tabelle 1, auf ±0.1 % ihrer Masse gewogen, um die Anfangsmasse zu bestimmen.
Der für den Versuch verwendeten Wasserbehälter wird dann in ein Waschbecken gesetzt, horizontal ausnivelliert und mit Leitungswasser bis zu einer festgelegten Höhe aufgefüllt. Die Prüfplatte wird eingetaucht und ebenfalls ausnivelliert, sodass die Auflager genau 5 mm unterhalb der Wasseroberfläche zu liegen kommen. Somit kann beim Auflegen der Probekörper auf die Punktauflage eine Eintauchtiefe von 5 mm eingehalten werden (Abbildung 23).

Um die Übersicht zu behalten, werden die Prüfkörper nummeriert und der Reihe nach aufgestellt. Damit kann ein reibungsloser Prüfungsablauf gewährleistet werden.

Abbildung 23: Eintauchtiefe von 5 mm nach der Norm.

5.4.2 Durchführung der Messung

Der erste Prüfkörper wird mit dem Putzaufbau nach unten auf die vorgesehenen Auflager gelegt. Sobald der Prüfkörper die Wasseroberfläche berührt, beginnt die Zeitmessung. In einem Zeitintervall von 30 Sekunden werden nun nachfolgend die weiteren Prüfkörper ins Wasser getaucht.


Der Messvorgang ist in Zeitabständen zu wiederholen. Z.B. nach 20 Minuten, 1 h, 2 h, 4 h, 8 h, 10 h, 12 h, und 24 h, um eine Reihe an Messwerten zu erhalten. Insgesamt dauert die Labormessung 24 h.
5.4.3 Aufgezeichnete Messdaten


<table>
<thead>
<tr>
<th>n</th>
<th>t</th>
<th>√(t (x))</th>
<th></th>
<th>Y_i</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>h</td>
<td>√h</td>
<td>Labor E1</td>
<td>Labor E2</td>
</tr>
<tr>
<td>1</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>2</td>
<td>0.08</td>
<td>0.29</td>
<td>0.46</td>
<td>0.30</td>
</tr>
<tr>
<td>3</td>
<td>0.33</td>
<td>0.58</td>
<td>0.70</td>
<td>0.40</td>
</tr>
<tr>
<td>4</td>
<td>1.00</td>
<td>1.00</td>
<td>1.02</td>
<td>0.55</td>
</tr>
<tr>
<td>5</td>
<td>2.00</td>
<td>1.41</td>
<td>1.30</td>
<td>0.71</td>
</tr>
<tr>
<td>6</td>
<td>4.00</td>
<td>2.00</td>
<td>1.81</td>
<td>0.97</td>
</tr>
<tr>
<td>7</td>
<td>8.00</td>
<td>2.83</td>
<td>2.59</td>
<td>1.36</td>
</tr>
<tr>
<td>8</td>
<td>10.00</td>
<td>3.16</td>
<td>2.94</td>
<td>1.51</td>
</tr>
<tr>
<td>9</td>
<td>12.00</td>
<td>3.46</td>
<td>3.21</td>
<td>1.66</td>
</tr>
<tr>
<td>10</td>
<td>24.00</td>
<td>4.90</td>
<td>4.42</td>
<td>2.23</td>
</tr>
</tbody>
</table>

5.4.4 Fehlerrechnung


5.4.4.1 Prüffläche

Die Methode der Flächenermittlung mit der Software bringt einerseits einen Fehler durch die Bestimmung des Massstabes und andererseits durch die Markierung der Prüffläche mit sich.

Dieser Fehler wird über die Wiederholgenauigkeit mehrerer Messungen abgeschätzt (Tabelle 12). Dabei wird die wirksame Oberfläche des Prüfkörpers sechs Mal nacheinander bestimmt und die empirische Standardabweichung, also der mittlere Fehler berechnet. Dabei wird der Massstab jedes Mal von neuem definiert.
Somit ergibt sich die Messunsicherheit der Prüffläche am Beispiel des Bohrkernes E4 wie folgt:

Tabelle 12: Abschätzung der Wiederholgenauigkeit mehrerer Messungen der Prüfkörperoberfläche E4.

<table>
<thead>
<tr>
<th>Bez.</th>
<th>Prüffläche</th>
<th>Fläche Bohransatz</th>
<th>Auflagerfläche</th>
<th>N Auflager</th>
<th>Auflagerfläche</th>
<th>Prüfoberfläche</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.00305</td>
<td>0.000121</td>
<td>0.000003</td>
<td>3</td>
<td>0.000009</td>
<td>0.0029226</td>
</tr>
<tr>
<td>2</td>
<td>0.003026</td>
<td>0.000123</td>
<td>0.000003</td>
<td>3</td>
<td>0.000009</td>
<td>0.0028940</td>
</tr>
<tr>
<td>3</td>
<td>0.002959</td>
<td>0.000113</td>
<td>0.000003</td>
<td>3</td>
<td>0.000009</td>
<td>0.0028370</td>
</tr>
<tr>
<td>4</td>
<td>0.002995</td>
<td>0.000113</td>
<td>0.000003</td>
<td>3</td>
<td>0.000009</td>
<td>0.0028560</td>
</tr>
<tr>
<td>5</td>
<td>0.002887</td>
<td>0.000131</td>
<td>0.000003</td>
<td>3</td>
<td>0.000009</td>
<td>0.0027470</td>
</tr>
<tr>
<td>6</td>
<td>0.003076</td>
<td>0.000115</td>
<td>0.000003</td>
<td>3</td>
<td>0.000009</td>
<td>0.0029520</td>
</tr>
</tbody>
</table>

Mittelwert: 0.0028681
Standardabweichung: 0.0000664
Varianz: 4.40985E-09

Damit ergibt sich die Prüffläche A des Bohrkernes E4 der Nordfassade zu

\[ A = (0.002856 \pm 0.0000664) \, m^2 \]  
Formel 32

Der mittlere Fehler von 66.4 mm² wurde auch für die Bestimmung aller anderen Prüfoberflächen verwendet.

5.4.4.2 Wasserstromdichte

Die aufgesaugte Wassermenge, die pro m² bis zu einer bestimmten Zeit t aufgenommen wird, kann als Wasserstromdichte \( \Phi \) dargestellt werden:

\[ \Phi = \frac{m(t)}{A} \]  
Formel 33

Die Messunsicherheit der Prüffläche A ergibt sich nach Formel 3,

Die Ablesegenauigkeit der Waage [6] beträgt 0.01 g. Damit beträgt die Messunsicherheit

\[ dm = \pm 1 \times 10^{-5} \, kg \]  
Formel 34

Die Messunsicherheit der Zeitmessung beträgt 1 s.
Damit bestimmt sich die Messunsicherheit der Wasserstromdichte zu

\[ d\Phi = \sqrt{\left(\frac{\partial\Phi}{\partial m} \cdot dm\right)^2 + \left(\frac{\partial\Phi}{\partial A} \cdot dA\right)^2} \]

Formel 35

5.4.4.3 Wurzel aus der Zeit

Die Genauigkeit der Bestimmung des Messzeitpunktes \( t \) beträgt \( dt = 2 \) s. Um eine lineare Regressionsgerade an die Messwerte anpassen zu können, werden diese über der Wurzel aus dem Messzeitpunkt aufgetragen.

\[ d\sqrt{t} = \frac{\partial\sqrt{t}}{\partial t} \cdot dt = \frac{1}{2} \cdot \frac{1}{\sqrt{t}} \cdot dt \]

Formel 36

5.4.5 Auswertung und Beurteilung der Messergebnisse

Zur Auswertung der Messergebnisse wird zunächst die aufgesaugte Wassermenge pro \( m^2 \) über der Wurzel aus dem Zeitpunkt der Erfassung der Messwerte graphisch aufgetragen.

Sodann wird eine Regressionsgerade nach dem „Fehler in den Variablen Modell“ bzw. als Y-aus-X Regression so an die Messwerte angepasst, bis die Summe aus den quadratischen Fehlern zwischen den Messwerten und den Funktionswerten der Regressionsgerade minimal wird. Der Wasseraufnahmekoeffizient, \( W_w \), ergibt sich dann als der Schätzwert der Steigung der Regressionsgeraden \( b'_y \). Der angegebene Fehler der Steigung der Regressionsgeraden berechnet sich aus dem Schätzwert der empirischen Varianz der Steigung der Regressionsgeraden und der \( t \)-Verteilung für das 95%-Vertrauensintervall.

Die detaillierten Berechnungen in Form von Tabellen und Diagramme zur Auswertung der einzelnen Messreihen sind im Anhang, unter dem Punkt A.4, abgelegt. In den Tabellen sind die, für die Ermittlung der Regressionsgeraden, aufgenommenen Messwerte der entsprechenden Fassade in Evilard aufgelistet. Die Diagramme zeigen die entsprechenden Regressionsgeraden zur Ermittlung des Wasseraufnahmekoeffizienten \( W_w \).
Die Ergebnisse der Labormessungen sind graphisch und in der Tabelle 13 dargestellt.

### Tabelle 13: Zusammenstellung der gemessenen Wasseraufnahmekoeffizienten $W_w$ der Bohrkerne aus der Nordfassade.

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Datum</th>
<th>Umfang</th>
<th>$W_w$-Wert</th>
<th>$DW_w$</th>
<th>Flächenverhältnis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Labormessung E1</td>
<td>14.10.2015-15.10.2015</td>
<td>9</td>
<td>0.87       ± 0.032</td>
<td>0.36</td>
<td></td>
</tr>
<tr>
<td>Labormessung E2</td>
<td></td>
<td>9</td>
<td>0.43       ± 0.017</td>
<td>0.86</td>
<td></td>
</tr>
<tr>
<td>Labormessung E3</td>
<td></td>
<td>9</td>
<td>0.235      ± 0.0088</td>
<td>0.93</td>
<td></td>
</tr>
<tr>
<td>Labormessung E4</td>
<td></td>
<td>8</td>
<td>0.61       ± 0.059</td>
<td>0.66</td>
<td></td>
</tr>
<tr>
<td>Labormessung E5</td>
<td></td>
<td>9</td>
<td>0.77       ± 0.045</td>
<td>0.61</td>
<td></td>
</tr>
<tr>
<td>Labormessung E6</td>
<td></td>
<td>9</td>
<td>0.65       ± 0.022</td>
<td>0.72</td>
<td></td>
</tr>
<tr>
<td>Labormessung E7</td>
<td></td>
<td>9</td>
<td>0.56       ± 0.049</td>
<td>0.77</td>
<td></td>
</tr>
<tr>
<td>Mittelwert</td>
<td></td>
<td>8.83</td>
<td>0.6        ± 0.532</td>
<td>0.69</td>
<td></td>
</tr>
</tbody>
</table>

Auf der Grafik 5 sowie in der Tabelle 13 ist erkennbar, dass die über die Regressionsgerade berechneten Wasseraufnahmekoeffizienten $W_w$ der einzelnen Messungen sich zwischen den Werten $0.235$ kg/(m$^2$·√h) und $0.87$ kg/(m$^2$·√h) befanden. Die $95\%$-Vertrauensintervalle der einzelnen Messungen liegen zwischen $0.0088$ und $0.049$ kg/(m$^2$·√h).
Zudem ist in der Tabelle 13 zusätzlich noch das Flächenverhältnis aufgeführt, das aussagt, wie gross die zu prüfende Fläche des jeweiligen Bohrkernes im Verhältnis zu der maximal möglichen Prüffläche ist. Vergleicht man die Spalte mit dem $W_w$-Wert mit jener des Flächenverhältnisses fällt auf, dass der grössste Wasseraufnahmekoeffizient $W_w$ bei dem kleinsten Flächenverhältnis auftritt und umgekehrt. Bildet man nun den Wasseraufnahmekoeffizienten $W_w$ über dem Flächenverhältnis ab, wie dies auf der Grafik 6 der Fall ist, wird eine klare Korrelation sichtbar. D.h. je schlechter das Flächenverhältnis, desto höher fällt der Wasseraufnahmekoeffizient $W_w$ aus. Diese Gegebenheit ist wahrscheinlich auf folgende zwei physikalische Phänomene zurückzuführen, die bereits die Ergebnisse der Karsten'schen Prüfröhrchen beeinflussten:

- Je kleiner die Prüffläche, desto grösseren Einfluss haben lokale Fehlstellen im Aussenputz, wie Risse, Löcher oder eine zu geringe Dicke des Putzes. Somit wird eine schnelle Absorption oder Weiterleitung des Schlagregenwassers begünstigt.
- Je kleiner die Prüffläche, desto grösser wird der wirksende Umfang im Verhältnis zur Fläche. Somit ist auch der Verlust in der dritten Dimension, also in der Ebene des Aussenputzes, über den Umfang entsprechend grösser. Zudem wird die horizontale Ausbreitung der Flüssigkeit nicht mehr durch die wasser- und dampfdichte Wachsschicht gestoppt. Folglich resultiert ein höherer Wasseraufnahmekoeffizient $W_w$.

![Grafik 6: Korrelation zwischen dem Flächenverhältnis und Wasseraufnahmekoeffizienten $W_w$.](image-url)
Somit ergibt sich die Gleichung für die berechnete Regressionsgerade der Korrelation

$$ W_w(A) = (-1.09 \pm 0.679) \frac{kg}{m^2\sqrt{h}} A + (1.34 \pm 0.481) \frac{kg}{m^2\sqrt{h}} A_0 $$

Hierbei bezeichnet

- $A/A_0$ das Flächenverhältnis der nicht abgedeckten Prüffläche und der geometrischen Prüffläche der Probe
- $W_w$ den Wasseraufnahmekoeffizient in kg/(m²√h)

Mit dem Bestimmtheitsmass $r^2$ und dem Korrelationskoeffizienten $r$

$$ r^2 = 0.77 $$
$$ r = -0.88 $$

Mit der Korrelation zwischen Flächenverhältnis der Proben und dem Messwert des Wasseraufnahmekoeffizienten nach Grafik 6 besteht die Möglichkeit, Einflüsse von Beschädigungen der Prüffläche, z. B. durch die Beschädigung beim Bohren, zu korrigieren.

5.5 Vergleich der Messmethoden und -ergebnisse


Wiederum fällt auf den ersten Blick auf, dass die Karsten'schen Röhren mit $(3 \pm 3.42)$ kg/(m²√h) stark streuen und deutlich höhere Wasseraufnahmekoeffizienten $W_w$ aufweisen, als die Franke'schen Prüfplatte mit $(0.9 \pm 0.38)$ kg/(m²√h), das Wasseraufnahmemessgerät mit $(0.95 \pm 0.01)$ kg/(m²√h) und die Labormessung mit $(0.6 \pm 0.53)$ kg/(m²√h). Auf die Gründe wurde bereits in Abschnitt 5.1.5 eingegangen.

Franke'sche Prüfplatte, WAM und Labormessung liegen sehr nah beisammen und weisen eine kleine Streuung auf. Somit ist das 95 %- Vertrauensintervall der Mittelwerte, insofern mehrere Messungen vorhanden sind, ebenfalls sehr klein. Folglich lassen sich die drei Verfahren nicht signifikant unterscheiden und kann damit abgeleitet werden, dass die Franke'sche Prüfplatte, das
Wasseraufnahmegerät und die Labormessung denselben mittleren Wert für den Wasseraufnahmekoeffizienten $W_w$ für die untersuchte Nordfassade in Evilard ergeben.

Dabei scheint die Franke'sche Prüfplatte aus ökonomischen Gründen und der Benutzerfreundlichkeit das passendste Verfahren zu sein. Sie ist handlich klein, günstig in der Anschaffung, einfach in der Handhabung und liefert verlässliche Werte.

Tabelle 14: Die einzelnen Prüfverfahren und die entsprechenden Wasseraufnahmekoeffizienten $W_w$ sowie das 95% Vertrauensintervall der Nordfassade in Evilard.

<table>
<thead>
<tr>
<th>Prüfverfahren</th>
<th>Umfang</th>
<th>$W_w$-Wert</th>
<th>DW $W_w$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Karsten'sche Prüfröhrchen</td>
<td>12</td>
<td>3</td>
<td>± 3.4</td>
</tr>
<tr>
<td>Franke'sche Prüfplatte</td>
<td>5</td>
<td>0.9</td>
<td>± 0.38</td>
</tr>
<tr>
<td>Wasseraufnahmegerät (WAM)</td>
<td>1</td>
<td>0.95</td>
<td>± 0.01</td>
</tr>
<tr>
<td>Labormessung</td>
<td>7</td>
<td>0.6</td>
<td>± 0.53</td>
</tr>
</tbody>
</table>

Grafik 7: Labormessung der Nordfassade im Vergleich zu den Insitu-Prüfverfahren für die Nordfassade in Evilard.
6 Verzeichnisse

6.1 Tabellen

Tabelle 1: Zusammenstellung der verwendeten Messgeräte. ________________________________ 7

Tabelle 2: Ergebnisse der Messungen mittels Prüfröhrchen an der Nordfassade in Evilard. ____10

Tabelle 3: Ergebnisse der Messungen mittels Prüfröhrchen an der Westfassade in Evilard. _____11

Tabelle 4: Zusammenstellung der Messwerte des Wasseraufnahmekoeffizienten $W_w$ mit dem Karsten’schen Prüfröhrchen an der Nordfassade. Die Fehler stellen das 95-%-Vertrauensintervall $(DW_w)$ dar. _________________________________15

Tabelle 5: Zusammenstellung der Messwerte des Wasseraufnahmekoeffizienten $W_w$ mit dem Karsten’schen Prüfröhrchen an der Westfassade. Die Fehler stellen das 95-%-Vertrauensintervall $(DW_w)$ dar. _________________________________15

Tabelle 6: Ergebnisse der Messungen mittels Franke’sche Prüfplatten an der Nordfassade in Evilard. _________________________________20

Tabelle 7: Ergebnisse der Messungen mittels Franke’sche Prüfplatten an der Westfassade in Evilard. _________________________________21

Tabelle 8: Zusammenstellung der Messwerte des Wasseraufnahmekoeffizienten $W_w$ mit der Franke’sche Prüfplatte an der Nordfassade. Die Fehler stellen das 95-%-Vertrauensintervall dar. Die Messung N4 wird aufgrund einer Leckage von den weiteren Auswertungen ausgeschlossen und ist somit nicht in Mittelwert enthalten. _________________________________25

Tabelle 9: Zusammenstellung der Messwerte des Wasseraufnahmekoeffizienten $W_w$ mit der Franke’sche Prüfplatte an der Westfassade. Die Fehler stellen das 95-%-Vertrauensintervall dar. _________________________________25

Tabelle 10: Zusammenstellung der Messwerte des Wasseraufnahmekoeffizienten $W_w$ mit dem Wasseraufnahmemessgerät an der Nord- und Westfassade. Die Fehler stellen das 95-%-Vertrauensintervall dar. _________________________________32


Tabelle 12: Abschätzung der Wiederholgenauigkeit mehrerer Messungen der Prüfkörperoberfläche E4. ________________________________________________________37

Tabelle 13: Zusammenstellung der gemessenen Wasseraufnahmekoeffizienten $W_w$ der Bohrkerne aus der Nordfassade. Die Fehler stellen das 95-%-Vertrauensintervall dar. __________________________39

Tabelle 14: Die einzelnen Prüfverfahren und die entsprechenden Wasseraufnahmekoeffizienten $W_w$, sowie das 95-%-Vertrauensintervall der Nordfassade in Evilard. ______________________42
6.2 Grafiken

Grafik 1: Darstellung der Messwerte des Wasseraufnahmekoeffizienten $W_w$ und deren Mittelwert an der Nord- und Westfassade, inkl. dem 95%-Vertrauensintervall. ______________________ 14

Grafik 2: Darstellung der Messwerte des Wasseraufnahmekoeffizienten $W_w$ und deren Mittelwert an der Nord- und Westfassade, inkl. dem 95%-Vertrauensintervall. Die Messung N4 wird aufgrund einer Leckage von den weiteren Auswertungen ausgeschlossen. ______________________ 24

Grafik 3: Daten der Messung mittels Wasseraufnahmemessgerät an der Nordfassade, inkl. der Regressionsgerade nach dem „Fehler in den Variablen Modell. ______________________ 29

Grafik 4: Messdaten der Messung mittels Wasseraufnahmemessgerät an der Westfassade, inkl. der Regressionsgerade nach dem „Fehler in den Variablen Modell“. ______________________ 29

Grafik 5: Darstellung der gemessenen Wasseraufnahmekoeffizienten $W_w$ der Bohrkerne aus der Nordfassade, inkl. dem 95%-Vertrauensintervall. ______________________ 39

Grafik 6: Korrelation zwischen dem Flächenverhältnis und Wasseraufnahmekoeffizienten $W_w$. __ 40

Grafik 7: Labormessung der Nordfassade im Vergleich zu den Insitu-Prüfverfahren für die Nordfassade in Evilard. ______________________ 42

6.3 Abbildungen

Abbildung 1: Graphische Darstellung der Funktionsweise des Wasseraufnahmemessgerätes. ____5

Abbildung 2: Das Wasseraufnahmemessgerät (WAM). ______________________ 5

Abbildung 3: Putz der Nordfassade. ______________________ 6

Abbildung 4: Putz der Westfassade. ______________________ 6

Abbildung 5: Ansicht der Nordfassade. ______________________ 7

Abbildung 6: Ansicht der Westfassade. ______________________ 7

Abbildung 7: Messpunkte 1-4 Nordfassade. ______________________ 8

Abbildung 8: Messungen 5-8 Nordfassade. ______________________ 8

Abbildung 9: Messpunkte 5-8 Westfassade. ______________________ 8

Abbildung 10: Messungen 5-8 Westfassade. ______________________ 8

Abbildung 11: Zwei parallel laufende Messungen an der Nordfassade. ______________________ 19

Abbildung 12: Detailaufnahme der Messung N4 an der Nordfassade. ______________________ 19

Abbildung 13: Messpunkte des 29.04.2015 an der Westfassade. ______________________ 19
Abbildung 14 : Messung W1_stud an der Westfassade. 19

Abbildung 15: Nahaufnahme der Nordfassade mit intaktem Farbanstrich. 26

Abbildung 16: Nahaufnahme der dem Wetter ausgesetzten Westfassade mit beschädigtem Farbanstrich. 26

Abbildung 17: Beim Ablösen des Prüfgerätes bleibt an der Nordfassade der Farbanstrich weitestgehend in Takt. 27

Abbildung 18: An der Westfassade löst sich einen Grossteil des Farbanstriches vom Aussenputz. 27

Abbildung 19: Die Messvorrichtung und das installierte WAM an der Westfassade 28

Abbildung 20: Das Aufnehmen der lichten Höhe und Breite für die Ermittlung der Prüffläche an der Nordfassade. 28


Abbildung 22: Extremes Beispiel einer beschädigten Bohrkernprobe. 34


Abbildung 24: Die Prüfkörper auf der Prüfplatte in der Prüfvorrichtung während der Messung. 35

6.4 Literaturverzeichnis


Anhang A:

A.1 Auswertung und Regressionsgeraden Karsten'sche Prüfröhrchen

A.1.1 Evilard Nord

Prüfung N4:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Messdatum: 12.08.2015</th>
<th>Lufttemperatur (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td></td>
<td>26</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Messdatum: 12.08.2015</th>
<th>Lufttemperatur (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td></td>
<td>26</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Messdatum: 12.08.2015</th>
<th>Lufttemperatur (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td></td>
<td>26</td>
</tr>
</tbody>
</table>

**Kartesisches Prüfröhrchen**

<table>
<thead>
<tr>
<th>x, y</th>
<th>in m²</th>
<th>in g</th>
<th>y aus x</th>
<th>FVM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.00</td>
<td>0.003</td>
<td>0.037</td>
<td>0.005</td>
</tr>
<tr>
<td>2</td>
<td>2.00</td>
<td>0.004</td>
<td>0.08</td>
<td>0.009</td>
</tr>
<tr>
<td>3</td>
<td>3.00</td>
<td>0.005</td>
<td>0.12</td>
<td>0.010</td>
</tr>
</tbody>
</table>

**Zuordnung der Messwerte**

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Messdatum: 12.08.2015</th>
<th>Lufttemperatur (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td></td>
<td>26</td>
</tr>
</tbody>
</table>

**Prüffläche in m²**

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Messdatum: 12.08.2015</th>
<th>Lufttemperatur (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td></td>
<td>26</td>
</tr>
</tbody>
</table>

**Masse in g**

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Messdatum: 12.08.2015</th>
<th>Lufttemperatur (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td></td>
<td>26</td>
</tr>
</tbody>
</table>

**Verhältnis der Restvarianzen**

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Messdatum: 12.08.2015</th>
<th>Lufttemperatur (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td></td>
<td>26</td>
</tr>
</tbody>
</table>

**Steigung b**

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Messdatum: 12.08.2015</th>
<th>Lufttemperatur (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td></td>
<td>26</td>
</tr>
</tbody>
</table>

**Achsenabschnitt a**

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Messdatum: 12.08.2015</th>
<th>Lufttemperatur (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td></td>
<td>26</td>
</tr>
</tbody>
</table>

**Empirische Varianz s²**

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Messdatum: 12.08.2015</th>
<th>Lufttemperatur (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td></td>
<td>26</td>
</tr>
</tbody>
</table>

**Empirische Varianz der Steigung s²**

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Messdatum: 12.08.2015</th>
<th>Lufttemperatur (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td></td>
<td>26</td>
</tr>
</tbody>
</table>

**Empirische Kovarianz s²**

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Messdatum: 12.08.2015</th>
<th>Lufttemperatur (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td></td>
<td>26</td>
</tr>
</tbody>
</table>

**Empirischer Korrelationskoeffizient r**

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Messdatum: 12.08.2015</th>
<th>Lufttemperatur (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td></td>
<td>26</td>
</tr>
</tbody>
</table>

**Empirischer Bestimmtheitsmass r²**

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Messdatum: 12.08.2015</th>
<th>Lufttemperatur (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td></td>
<td>26</td>
</tr>
</tbody>
</table>

**Wasseraufnahmekoeffizient W**

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Messdatum: 12.08.2015</th>
<th>Lufttemperatur (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td></td>
<td>26</td>
</tr>
</tbody>
</table>

**Regressionsergebnisse**

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Messdatum: 12.08.2015</th>
<th>Lufttemperatur (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td></td>
<td>26</td>
</tr>
</tbody>
</table>

---

**Wasseraufnahmekoeffizient W**

\[ W = \left( 1.976 \pm 0.134 \right) \text{ kg/(m}^2\cdot\text{h}) \]
### Prüfung N5:

**Objekt**: Evilard Fassadenfeuchte Digits Gann

**Messprotokoll Stand 24.8.15**

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Messdatum: 12.08.2015</th>
<th>Luftfeuchte</th>
<th>Lufttemperatur</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td></td>
<td></td>
<td>26</td>
</tr>
</tbody>
</table>

**Fassade Nord**

**Messdatum**: 12.08.2015

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Messprotokoll Stand 11.8.15</th>
<th>Luftfeuchte</th>
<th>Lufttemperatur</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>x aus y</td>
<td>58</td>
<td>26</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>x aus y</th>
<th>y aus x</th>
<th>FVM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### Wasseraufnahmekoeffizient

Wasseraufnahmekoeffizient $W_w$ (3.936 +/- 0.237 (95%) kg/(m²*√h))
### Prüfung N6:

**Objekt**: Evilard Fassadenfeuchte

**Fassade**: Nord

**Wetter**: Lufttemperatur 26

**Messdatum**: 12.08.2015

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Messdatum</th>
<th>Luftfeuchte</th>
<th>Lufttemperatur</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>12.08.2015</td>
<td>58</td>
<td>26</td>
</tr>
</tbody>
</table>

#### Karsten’sches Prüfröhrchen

<table>
<thead>
<tr>
<th>n</th>
<th>xi</th>
<th>x²</th>
<th>yi</th>
<th>y²</th>
<th>FVM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.05</td>
<td>0.0002</td>
<td>0.017</td>
<td>0.14</td>
<td>0.002</td>
</tr>
<tr>
<td>2</td>
<td>0.10</td>
<td>0.0004</td>
<td>0.032</td>
<td>0.22</td>
<td>0.003</td>
</tr>
<tr>
<td>3</td>
<td>0.15</td>
<td>0.0006</td>
<td>0.043</td>
<td>0.22</td>
<td>0.003</td>
</tr>
<tr>
<td>4</td>
<td>0.20</td>
<td>0.0008</td>
<td>0.051</td>
<td>0.22</td>
<td>0.003</td>
</tr>
</tbody>
</table>

**Messgenauigkeiten**

<table>
<thead>
<tr>
<th>Zeit in s</th>
<th>2</th>
<th>Masse in g</th>
<th>0.0007</th>
<th>Prüffläche in m²</th>
<th>9E-05</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.08</td>
<td>0.2125</td>
<td>0.007</td>
<td>0.008</td>
<td>0.00129</td>
</tr>
<tr>
<td>2</td>
<td>0.16</td>
<td>0.4257</td>
<td>0.017</td>
<td>0.034</td>
<td>0.0002</td>
</tr>
<tr>
<td>3</td>
<td>0.24</td>
<td>0.6455</td>
<td>0.025</td>
<td>0.057</td>
<td>0.0003</td>
</tr>
<tr>
<td>4</td>
<td>0.32</td>
<td>0.8663</td>
<td>0.035</td>
<td>0.082</td>
<td>0.004</td>
</tr>
</tbody>
</table>

**Summen**

| Summen | 17 | 7.4076 | 3.95 | 8.30965915 | 5.971 | 4.781 |

**Mittelwert**

| 2 | 4.328 | 0.48881 | 0.02 |

**Emp. Kovarianz**

| 2 | 0.2125 | 0.34542109 |

**Emp. linearer Korrelationskoeffizient** $r = 0.9882$

**Emp. Bestimmtheitsmass** $r^2 = 0.977$

**Verhältnis der Restvarianzen** $u = 2$

#### Wasseraufnahmekoeffizient $W_w$

| Wasseraufnahmekoeffizient $W_w = (1.626 \pm 0.161\ (95\%))$ kg/(m²√h) |

**Wasserabgabe in kg/m²**

<table>
<thead>
<tr>
<th>Aufgesaugte Wassermasse in kg/m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>y aus x</td>
</tr>
<tr>
<td>Messwerte</td>
</tr>
<tr>
<td>x aus y</td>
</tr>
<tr>
<td>FVM</td>
</tr>
</tbody>
</table>

**---Linear (Messwerte)**

**FVM**

| y = 1.6067x - 0.2113 |
| R² = 0.9765 |

**Diagramm**

- **y aus x**
- **Messwerte**
- **x aus y**
- **FVM**

**BFH AHB**
Prüfung N7:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Fassade</th>
<th>Objekt</th>
<th>Evard</th>
<th>Luftfeuchte</th>
<th>Lufttemperatur</th>
<th>Wetter</th>
<th>Messeprotokoll Stand 24.8.15</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Nord</td>
<td>Evilard</td>
<td>Fassadenfeuchte</td>
<td>Digits Gann</td>
<td>26</td>
<td>12.08.2015</td>
<td>58</td>
</tr>
</tbody>
</table>

Karsten'sches Prüfröhrchen

\[
\begin{array}{ccccccc}
\text{Prüfröhrchen} & \text{Masse in g} & \text{Zeit in s} & \text{Wasseraufnahmekoeffizient W} & \text{FVM} \\
\hline
BFH AHB & 28 & 26 & 0.971 & 0.16 & (95\%) kg/(m²·h) \\
FVM & 26 & 26 & 0.971 & 0.16 & (95\%) kg/(m²·h) \\
\end{array}
\]

Regressionsgeraden

\[
\begin{align*}
y \text{ aus } x &= 0.948x - 0.0869 \\
R^2 &= 0.9531
\end{align*}
\]

Empirische Varianz Mittelwert 0.0008
Empirische Varianz Steigung 0.0028
Empirische Varianz der Steigung 0.0007
Empirische Varianz Mittelwert 0.0000
Empirische Varianz Steigung 0.0000
Empirische Varianz der Steigung 0.0000

Empirische Varianz Mittelwert 0.0008
Empirische Varianz Steigung 0.0028
Empirische Varianz der Steigung 0.0007
Empirische Varianz Mittelwert 0.0000
Empirische Varianz Steigung 0.0000
Empirische Varianz der Steigung 0.0000

Wasseraufnahmekoeffizient Wₐ = (0.971 ± 0.16 (95\%) kg/(m²·h))
Prüfung N9:

Objekt: Evilard Fassadenfeuchte

Digit Gann Messprotokoll Stand 24.8.15

Fassade Nord Wetter Lufttemperatur 26

Nr. 9

Messdatum: 12.08.2015

Luftfeuchte

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Messdatum</th>
<th>Luftfeuchte</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>12.08.2015</td>
<td>58</td>
</tr>
</tbody>
</table>

Prüfergebnisse

<table>
<thead>
<tr>
<th>Zeit in s</th>
<th>Masse in g</th>
<th>Prüffläche in m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.1291</td>
<td>0.002</td>
</tr>
<tr>
<td>2</td>
<td>0.1826</td>
<td>0.002</td>
</tr>
<tr>
<td>3</td>
<td>0.2365</td>
<td>0.001</td>
</tr>
<tr>
<td>4</td>
<td>0.2892</td>
<td>0.001</td>
</tr>
<tr>
<td>5</td>
<td>0.3416</td>
<td>0.001</td>
</tr>
<tr>
<td>6</td>
<td>0.3162</td>
<td>0.001</td>
</tr>
<tr>
<td>7</td>
<td>0.3782</td>
<td>0.001</td>
</tr>
<tr>
<td>8</td>
<td>0.4256</td>
<td>0.001</td>
</tr>
<tr>
<td>9</td>
<td>0.4887</td>
<td>0.001</td>
</tr>
<tr>
<td>10</td>
<td>0.5514</td>
<td>0.001</td>
</tr>
<tr>
<td>11</td>
<td>0.6142</td>
<td>0.001</td>
</tr>
<tr>
<td>12</td>
<td>0.6769</td>
<td>0.001</td>
</tr>
<tr>
<td>13</td>
<td>0.7397</td>
<td>0.001</td>
</tr>
<tr>
<td>14</td>
<td>0.8015</td>
<td>0.001</td>
</tr>
<tr>
<td>15</td>
<td>0.8633</td>
<td>0.001</td>
</tr>
</tbody>
</table>

Emp. Standardabweichung sₓ, sᵧ = 0.2776

Emp. Varianz der Steigung s_b² = 0.0159

Emp. Kovarianz s_xy = 0.0048

Emp. Restvarianz s_e² = 0.0208

Emp. linearer Korrelationskoeffizient r = 0.9902

Wasseraufnahmekoeffizient W_w = \( 3.6 \pm 0.277 \) (95%) kg/(m²√h)

Emp. Bestimmtheitsmass \( r^2 \) = 0.98

Steigung b_1 = 3.5647

Achsenabschnitt a_1 = -0.489

Emp. Restvarianz s_a² = 0.0206

Emp. Varianz der Steigung s_b² = 0.0159

Emp. Varianz Mittelwert \( s_{\bar{x}} \) = 0.0048

Emp. Varianz der Steigung s_b² = 0.0159

Emp. Kovarianz s_xy = 0.0048

FVM

y = 3.5647x - 0.4889

R² = 0.9804
Prüfung N10:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Messdatum: 12.08.2015</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfung N10:</td>
<td>Objekt Evilard Fassadenfeuchte Digits Gann Messprotokoll Stand 24.8.15</td>
</tr>
<tr>
<td>#</td>
<td>Messtisch</td>
</tr>
<tr>
<td>-----</td>
<td>-----------</td>
</tr>
<tr>
<td>1</td>
<td>1.00</td>
</tr>
<tr>
<td>2</td>
<td>3.00</td>
</tr>
<tr>
<td>3</td>
<td>5.00</td>
</tr>
<tr>
<td>4</td>
<td>7.00</td>
</tr>
<tr>
<td>5</td>
<td>9.00</td>
</tr>
<tr>
<td>6</td>
<td>11.00</td>
</tr>
<tr>
<td>7</td>
<td>13.00</td>
</tr>
<tr>
<td>8</td>
<td>15.00</td>
</tr>
<tr>
<td>9</td>
<td>17.00</td>
</tr>
<tr>
<td>10</td>
<td>19.00</td>
</tr>
<tr>
<td>11</td>
<td>21.00</td>
</tr>
<tr>
<td>12</td>
<td>23.00</td>
</tr>
<tr>
<td>13</td>
<td>25.00</td>
</tr>
<tr>
<td>14</td>
<td>27.00</td>
</tr>
<tr>
<td>15</td>
<td>29.00</td>
</tr>
<tr>
<td>16</td>
<td>31.00</td>
</tr>
<tr>
<td>17</td>
<td>33.00</td>
</tr>
<tr>
<td>18</td>
<td>35.00</td>
</tr>
<tr>
<td>19</td>
<td>37.00</td>
</tr>
<tr>
<td>20</td>
<td>39.00</td>
</tr>
<tr>
<td>21</td>
<td>41.00</td>
</tr>
<tr>
<td>22</td>
<td>43.00</td>
</tr>
<tr>
<td>23</td>
<td>45.00</td>
</tr>
<tr>
<td>24</td>
<td>47.00</td>
</tr>
<tr>
<td>25</td>
<td>49.00</td>
</tr>
<tr>
<td>26</td>
<td>51.00</td>
</tr>
<tr>
<td>27</td>
<td>53.00</td>
</tr>
<tr>
<td>28</td>
<td>55.00</td>
</tr>
<tr>
<td>29</td>
<td>57.00</td>
</tr>
<tr>
<td>30</td>
<td>59.00</td>
</tr>
<tr>
<td>31</td>
<td>61.00</td>
</tr>
<tr>
<td>32</td>
<td>63.00</td>
</tr>
<tr>
<td>33</td>
<td>65.00</td>
</tr>
<tr>
<td>34</td>
<td>67.00</td>
</tr>
<tr>
<td>35</td>
<td>69.00</td>
</tr>
<tr>
<td>36</td>
<td>71.00</td>
</tr>
<tr>
<td>37</td>
<td>73.00</td>
</tr>
<tr>
<td>38</td>
<td>75.00</td>
</tr>
<tr>
<td>39</td>
<td>77.00</td>
</tr>
<tr>
<td>40</td>
<td>79.00</td>
</tr>
<tr>
<td>41</td>
<td>81.00</td>
</tr>
<tr>
<td>42</td>
<td>83.00</td>
</tr>
<tr>
<td>43</td>
<td>85.00</td>
</tr>
<tr>
<td>44</td>
<td>87.00</td>
</tr>
<tr>
<td>45</td>
<td>89.00</td>
</tr>
<tr>
<td>46</td>
<td>91.00</td>
</tr>
<tr>
<td>47</td>
<td>93.00</td>
</tr>
<tr>
<td>48</td>
<td>95.00</td>
</tr>
<tr>
<td>49</td>
<td>97.00</td>
</tr>
<tr>
<td>50</td>
<td>99.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Regressionsgeraden</th>
<th>x aus y</th>
<th>y aus x</th>
<th>FVM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steigung b&lt;sub&gt;y&lt;/sub&gt;</td>
<td>1.8634</td>
<td>1.8634</td>
<td></td>
</tr>
<tr>
<td>Achsenabschnitt a&lt;sub&gt;y&lt;/sub&gt;</td>
<td>-0.414</td>
<td>-0.414</td>
<td></td>
</tr>
<tr>
<td>Emp. Restvarianz s&lt;sub&gt;y&lt;/sub&gt;&lt;sup&gt;2&lt;/sup&gt;</td>
<td>0.0107</td>
<td>0.0107</td>
<td></td>
</tr>
<tr>
<td>Emp. Varianz der Steigung s&lt;sub&gt;y&lt;/sub&gt;</td>
<td>0.0148</td>
<td>0.0148</td>
<td></td>
</tr>
<tr>
<td>Emp. Varianz Mittelwert</td>
<td>0.0034</td>
<td>0.0034</td>
<td></td>
</tr>
</tbody>
</table>

\[
y = 1.8634x - 0.4143 \quad R^2 = 0.9401
\]
**Prüfung N11:**

<table>
<thead>
<tr>
<th>Objekt</th>
<th>Evilard</th>
<th>Fassadenfeuchte nicht gemessen</th>
<th>Digits Gann</th>
<th>Messprotokoll Stand 24.8.15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Farbe</td>
<td>Nord</td>
<td>Wetter sonnig, Fassade im Schatten</td>
<td>Lufttemperatur</td>
<td>Luftfeuchte</td>
</tr>
<tr>
<td>Nr.</td>
<td>11</td>
<td>26.08.2015; 12:45 Uhr</td>
<td>82</td>
<td>53</td>
</tr>
</tbody>
</table>

### Karsten'sches Prüfröhrchen

<table>
<thead>
<tr>
<th>n</th>
<th>x in mm</th>
<th>y in mm²/m²</th>
<th>x²</th>
<th>y²</th>
<th>x·y</th>
<th>FVM</th>
<th>x·y²</th>
<th>y·x²</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.00</td>
<td>0.1291</td>
<td>0.0002</td>
<td>0.017</td>
<td>0.22</td>
<td>0.0005</td>
<td>0.1</td>
<td>0.14084507</td>
</tr>
<tr>
<td>2</td>
<td>2.00</td>
<td>0.1826</td>
<td>0.0002</td>
<td>0.033</td>
<td>0.25</td>
<td>0.0004</td>
<td>0.2</td>
<td>0.28169014</td>
</tr>
<tr>
<td>3</td>
<td>3.00</td>
<td>0.2239</td>
<td>0.0001</td>
<td>0.058</td>
<td>0.28</td>
<td>0.0004</td>
<td>0.3</td>
<td>0.28169014</td>
</tr>
<tr>
<td>4</td>
<td>4.00</td>
<td>0.2562</td>
<td>0.0001</td>
<td>0.086</td>
<td>0.29</td>
<td>0.0004</td>
<td>0.4</td>
<td>0.4253521</td>
</tr>
</tbody>
</table>

### Messgenauigkeiten

<table>
<thead>
<tr>
<th>n</th>
<th>x in s</th>
<th>y in m</th>
<th>z in m²²</th>
<th>w in m²²</th>
<th>x²</th>
<th>y²</th>
<th>z²</th>
<th>w²</th>
<th>x·y²</th>
<th>y·x²</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5.00</td>
<td>0.28</td>
<td>1E-03</td>
<td>0.08</td>
<td>0.0003</td>
<td>0.7</td>
<td>0.017</td>
<td>0.47</td>
<td>0.406</td>
<td>0.01495943</td>
</tr>
<tr>
<td>2</td>
<td>6.00</td>
<td>0.31</td>
<td>2E-03</td>
<td>0.12</td>
<td>0.0003</td>
<td>0.7</td>
<td>0.017</td>
<td>0.47</td>
<td>0.406</td>
<td>0.01495943</td>
</tr>
</tbody>
</table>

### Zeit in s

<table>
<thead>
<tr>
<th>n</th>
<th>x in °C</th>
<th>y in °C</th>
<th>z in °C²</th>
<th>w in °C²</th>
<th>x²</th>
<th>y²</th>
<th>z²</th>
<th>w²</th>
<th>x·y²</th>
<th>y·x²</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7.00</td>
<td>0.28</td>
<td>1E-03</td>
<td>0.08</td>
<td>0.0003</td>
<td>0.7</td>
<td>0.017</td>
<td>0.47</td>
<td>0.406</td>
<td>0.01495943</td>
</tr>
<tr>
<td>2</td>
<td>8.00</td>
<td>0.31</td>
<td>2E-03</td>
<td>0.12</td>
<td>0.0003</td>
<td>0.7</td>
<td>0.017</td>
<td>0.47</td>
<td>0.406</td>
<td>0.01495943</td>
</tr>
</tbody>
</table>

### Masse in g

<table>
<thead>
<tr>
<th>n</th>
<th>x in m</th>
<th>y in m²²</th>
<th>z in m²²</th>
<th>w in m²²</th>
<th>x²</th>
<th>y²</th>
<th>z²</th>
<th>w²</th>
<th>x·y²</th>
<th>y·x²</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>9.00</td>
<td>0.28</td>
<td>1E-03</td>
<td>0.08</td>
<td>0.0003</td>
<td>0.7</td>
<td>0.017</td>
<td>0.47</td>
<td>0.406</td>
<td>0.01495943</td>
</tr>
<tr>
<td>2</td>
<td>10.00</td>
<td>0.31</td>
<td>2E-03</td>
<td>0.12</td>
<td>0.0003</td>
<td>0.7</td>
<td>0.017</td>
<td>0.47</td>
<td>0.406</td>
<td>0.01495943</td>
</tr>
</tbody>
</table>

### Prüffläche in m²

<table>
<thead>
<tr>
<th>n</th>
<th>x in °C</th>
<th>y in °C</th>
<th>z in °C²</th>
<th>w in °C²</th>
<th>x²</th>
<th>y²</th>
<th>z²</th>
<th>w²</th>
<th>x·y²</th>
<th>y·x²</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>11.00</td>
<td>0.28</td>
<td>1E-03</td>
<td>0.08</td>
<td>0.0003</td>
<td>0.7</td>
<td>0.017</td>
<td>0.47</td>
<td>0.406</td>
<td>0.01495943</td>
</tr>
<tr>
<td>2</td>
<td>12.00</td>
<td>0.31</td>
<td>2E-03</td>
<td>0.12</td>
<td>0.0003</td>
<td>0.7</td>
<td>0.017</td>
<td>0.47</td>
<td>0.406</td>
<td>0.01495943</td>
</tr>
</tbody>
</table>

### Prüflöffel in m³

<table>
<thead>
<tr>
<th>n</th>
<th>x in °C</th>
<th>y in °C</th>
<th>z in °C²</th>
<th>w in °C²</th>
<th>x²</th>
<th>y²</th>
<th>z²</th>
<th>w²</th>
<th>x·y²</th>
<th>y·x²</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>13.00</td>
<td>0.28</td>
<td>1E-03</td>
<td>0.08</td>
<td>0.0003</td>
<td>0.7</td>
<td>0.017</td>
<td>0.47</td>
<td>0.406</td>
<td>0.01495943</td>
</tr>
<tr>
<td>2</td>
<td>14.00</td>
<td>0.31</td>
<td>2E-03</td>
<td>0.12</td>
<td>0.0003</td>
<td>0.7</td>
<td>0.017</td>
<td>0.47</td>
<td>0.406</td>
<td>0.01495943</td>
</tr>
</tbody>
</table>

### Wasseraufnahmekoeffizient W

\[ W_{w} = \left( \frac{6.287 \pm 1.383 (95\%)}{\text{kg/(m}^2\text{/h)}} \right) \]
Prüfung N12:

Objekt: Evilard
Fassadenfeuchte: nicht gemessen

Wetter: sonnig
Fassade: Nord
Prüffläche in m²: 9E-06
Prüffläche in m²: 2.00

<table>
<thead>
<tr>
<th>x aus y</th>
<th>y aus x</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>xᵢ</td>
</tr>
<tr>
<td>m in kg/m²</td>
<td>xᵢ²</td>
</tr>
<tr>
<td>y in kg/(m² √h)</td>
<td>yᵢ²</td>
</tr>
<tr>
<td>1</td>
<td>1.00</td>
</tr>
<tr>
<td>2.00</td>
<td>0.1828</td>
</tr>
<tr>
<td>3.00</td>
<td>0.2236</td>
</tr>
<tr>
<td>4.00</td>
<td>0.2632</td>
</tr>
<tr>
<td>5.00</td>
<td>0.2867</td>
</tr>
<tr>
<td>6.00</td>
<td>0.3162</td>
</tr>
<tr>
<td>7.00</td>
<td>0.3367</td>
</tr>
<tr>
<td>8.00</td>
<td>0.3561</td>
</tr>
<tr>
<td>9.00</td>
<td>0.3752</td>
</tr>
<tr>
<td>10.00</td>
<td>0.3943</td>
</tr>
<tr>
<td>11.00</td>
<td>0.4135</td>
</tr>
<tr>
<td>12.00</td>
<td>0.4327</td>
</tr>
<tr>
<td>13.00</td>
<td>0.4519</td>
</tr>
<tr>
<td>14.00</td>
<td>0.4709</td>
</tr>
<tr>
<td>15.00</td>
<td>0.4897</td>
</tr>
<tr>
<td>16.00</td>
<td>0.5083</td>
</tr>
<tr>
<td>17.00</td>
<td>0.5268</td>
</tr>
<tr>
<td>18.00</td>
<td>0.5451</td>
</tr>
<tr>
<td>19.00</td>
<td>0.5633</td>
</tr>
<tr>
<td>20.00</td>
<td>0.5813</td>
</tr>
<tr>
<td>21.00</td>
<td>0.5990</td>
</tr>
<tr>
<td>22.00</td>
<td>0.6165</td>
</tr>
<tr>
<td>23.00</td>
<td>0.6338</td>
</tr>
<tr>
<td>24.00</td>
<td>0.6509</td>
</tr>
<tr>
<td>25.00</td>
<td>0.6677</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Masse in g</th>
<th>xᵢ²</th>
<th>+/−xᵢ</th>
</tr>
</thead>
<tbody>
<tr>
<td>9E-06</td>
<td>0.109</td>
<td>0.0005</td>
</tr>
<tr>
<td>9E-05</td>
<td>0.148</td>
<td>0.0007</td>
</tr>
<tr>
<td>9E-04</td>
<td>0.186</td>
<td>0.0009</td>
</tr>
<tr>
<td>9E-03</td>
<td>0.224</td>
<td>0.0011</td>
</tr>
<tr>
<td>9E-02</td>
<td>0.262</td>
<td>0.0013</td>
</tr>
<tr>
<td>9E-01</td>
<td>0.300</td>
<td>0.0015</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Summen</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>0.4179</td>
</tr>
<tr>
<td>1.07042254</td>
</tr>
<tr>
<td>0.0343</td>
</tr>
<tr>
<td>0.5917</td>
</tr>
<tr>
<td>0.79922365</td>
</tr>
</tbody>
</table>

| Emp. linearer Korrelationskoeffizient r² | 0.964 |
| Emp. Bestimmtheitsmass r² | 0.968 |
| u | 2 |

<table>
<thead>
<tr>
<th>Regressionsgeraden</th>
</tr>
</thead>
<tbody>
<tr>
<td>y aus x</td>
</tr>
<tr>
<td>Steigung bₓ</td>
</tr>
<tr>
<td>Achsenabschnitt aₓ</td>
</tr>
<tr>
<td>Emp. Kovarianz sxₓ</td>
</tr>
<tr>
<td>Emp. Standardabweichung sxₓ</td>
</tr>
<tr>
<td>Emp. linearer Korrelationskoeffizient r</td>
</tr>
</tbody>
</table>

| Wasseraufnahmekoeffizient Wₓ | (4.153 +/- 0.456 (95%)) kg/(m² √h) |

| y = 4.0869x - 0.6376 |
| R² = 0.9683 |

<table>
<thead>
<tr>
<th>Aufgenommene Wassermasse in kg/m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Wurzel aus der Zeit in vh</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
<tr>
<td>0.2</td>
</tr>
<tr>
<td>0.4</td>
</tr>
<tr>
<td>0.6</td>
</tr>
<tr>
<td>0.8</td>
</tr>
</tbody>
</table>

| y aus x | Messwerte | x aus y | FVM | ----Linear (Messwerte) |

BFH AHB 72FE-006970-F-01_Aussenputze_MB_15.12.31
Prüfung N13:

Objekt: Evilard
Fassade: Nord
Messprotokoll Stand 24.8.15

Messelement: Fassadenfeuchte
Wetter: sonnig
Fassade im Schatten
Lufttemperatur: 53

Kartesisches System

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
<th>x^2</th>
<th>y^2</th>
<th>x*y</th>
<th>FVM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.01291</td>
<td>0.0002</td>
<td>0.171</td>
<td>0.0004</td>
<td>0.1</td>
</tr>
<tr>
<td>2</td>
<td>0.01291</td>
<td>0.0002</td>
<td>0.171</td>
<td>0.0004</td>
<td>0.1</td>
</tr>
<tr>
<td>3</td>
<td>0.01291</td>
<td>0.0002</td>
<td>0.171</td>
<td>0.0004</td>
<td>0.1</td>
</tr>
</tbody>
</table>

Messgenauigkeiten

<table>
<thead>
<tr>
<th>Zeit in s</th>
<th>Masse in g</th>
<th>Prüffläche in m^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3.00</td>
<td>0.002</td>
</tr>
<tr>
<td>2</td>
<td>6.00</td>
<td>0.004</td>
</tr>
</tbody>
</table>

Empirische Varianzen

Emp. Kovarianz s_{xy} 0.00076174
Emp. Restvarianz s_{e}^2 0.00076174

Emp. Bestimmtheitsmass r^2 0.9662
Emp. Restvarianz s_{e}^2 0.00076174

Regressionsgeraden

y aus x: y = 1.674x - 0.2592
R^2 = 0.9335

Wasseraufnahmekoeffizient W_a = \(1.733 +/− 0.284\) (95%) kg/m²•h
Prüfung N14:

Objekt: Evilard
Fassadenelektrode: Fassade Nord
Messprotokoll Stand 24.8.15

Messgenauigkeiten
- Zeit in s
- Masse in g
- Prüffläche in m² 9E-04
- Prüffläche in m² 0.0007

Messdaten:
- 26.08.2015, 12:45 Uhr
- Luftfeuchte

Prüfung N14: Wasseraufnahmekoeffizient W = \( 3.812 \pm 0.206 \) (95%) kg/(m²*h)

- Steigung \( b_y \)
- Achsenabschnitt \( a_y \)
- Emp. Restvarianz \( s_y^2 \)
- Emp. Varianz der Steigung \( s_{by}^2 \)
- Emp. Varianz Mittelwert

\[ y = 3.7952x - 0.3438 \]
\[ R^2 = 0.991 \]
**Prüfung N15:**

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Messdatum</th>
<th>Luftfeuchte</th>
<th>Lufttemperatur</th>
<th>Fassade</th>
<th>Objekt</th>
<th>Wetter</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>26.08.2015; 12:45 Uhr</td>
<td>53</td>
<td>22</td>
<td>Nord</td>
<td>Evilard</td>
<td>spring</td>
</tr>
</tbody>
</table>

### Karsten'sche Prüfgerade

<table>
<thead>
<tr>
<th>n</th>
<th>$x_i$</th>
<th>$\pm x_i$</th>
<th>$y_i$</th>
<th>$\pm y_i$</th>
<th>$x_i^2$</th>
<th>$y_i^2$</th>
<th>$x_i y_i$</th>
<th>$\sum_{i=1}^{n} x_i$</th>
<th>$\sum_{i=1}^{n} y_i$</th>
<th>$\sum_{i=1}^{n} x_i y_i$</th>
<th>$\sum_{i=1}^{n} x_i^2$</th>
<th>$\sum_{i=1}^{n} y_i^2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.01</td>
<td>0.02</td>
<td>0.17</td>
<td>0.16</td>
<td>0.001</td>
<td>0.15</td>
<td>0.001</td>
<td>1.02</td>
<td>0.17</td>
<td>0.001</td>
<td>1.02</td>
<td>0.17</td>
</tr>
<tr>
<td>2</td>
<td>2.01</td>
<td>0.02</td>
<td>0.33</td>
<td>0.22</td>
<td>0.05</td>
<td>0.42</td>
<td>0.05</td>
<td>2.01</td>
<td>0.33</td>
<td>0.05</td>
<td>2.01</td>
<td>0.33</td>
</tr>
<tr>
<td>3</td>
<td>3.01</td>
<td>0.02</td>
<td>0.56</td>
<td>0.22</td>
<td>0.09</td>
<td>0.61</td>
<td>0.09</td>
<td>3.01</td>
<td>0.56</td>
<td>0.09</td>
<td>3.01</td>
<td>0.56</td>
</tr>
<tr>
<td>4</td>
<td>4.01</td>
<td>0.02</td>
<td>0.79</td>
<td>0.28</td>
<td>0.11</td>
<td>0.71</td>
<td>0.11</td>
<td>4.01</td>
<td>0.79</td>
<td>0.11</td>
<td>4.01</td>
<td>0.79</td>
</tr>
<tr>
<td>5</td>
<td>5.01</td>
<td>0.02</td>
<td>0.00</td>
<td>0.35</td>
<td>0.02</td>
<td>0.38</td>
<td>0.02</td>
<td>5.01</td>
<td>0.00</td>
<td>0.02</td>
<td>5.01</td>
<td>0.00</td>
</tr>
<tr>
<td>6</td>
<td>6.01</td>
<td>0.02</td>
<td>0.15</td>
<td>0.49</td>
<td>0.05</td>
<td>0.78</td>
<td>0.05</td>
<td>6.01</td>
<td>0.15</td>
<td>0.05</td>
<td>6.01</td>
<td>0.15</td>
</tr>
</tbody>
</table>

#### Messgenauigkeiten

- Zeit in s: 2
- Masse in g: 0.05
- Prüfläche in m²: 9E-05
- Prüfläche in m²: 0.0007

#### Regressionsgeraden

- Steigung $b_x$: 2.2627
- Achsenschnitt $a_x$: -0.216
- Emp. Restvarianz $s_{e}^2$: 0.0031
- Emp. Varianz der Steigung $s_{b}^2$: 0.0043
- Emp. Varianz Mittelwert $s_{(b-x)}$: 0.0011

**Empir. Kovarianz der Steigung**

**Emp. Varianz des Steigungsterms**

**Emp. Varianz der Steigung**

**Emp. Varianz Mittelwert**

**Messprotokoll Stand 24.8.15**

**Fassadenfeuchte nicht gemessen**

**B_15.12.3**

**Prüfung N15:**

**Emp. linearer Korrelationskoeffizient $r$: 0.9938**

**Emp. Bestimmtheitsmass $R^2$: 0.9866**

**Wasserabnahmekoeffizient $W$: $2.277 \pm 0.153$ (95%) kg/(m²/h)**

**Fassadenfeuchte测量结果**

**Wetter**

- sonnig

**Prüffläche**

- Prüffläche in m²: 9E-05
- Prüffläche in m²: 0.0007

**Summen**

- Mittelwert: 17
- Emp. Standardabweichung $s_x$: 0.213
- Emp. Varianz der Steigung: 0.0011

**Vermessungen**

- Objekt Evilard
- Fassade Nord

**Diagramm**

- $y = 2.2627x - 0.2162$
- $R^2 = 0.9876$
Prüfung N16:

Objekt: Evilard

Fassadenfeuchte nicht gemessen

Messprotokoll Stand 24.8.15

BFH AHB

D. Gann


digits

Objekt

Fassadenfeuchte

Wetter

so n

Luf temperatur

Prüffläche in m²

Masse in g

Prüflfläche

Prüfläche in m²

Mittelwert

Empirische Varianz s²

Emp. Varianz der Steigung sby

Emp. Kovarianz sxy

Emp. Varianz der Steigung sby

Emp. Varianz Mittelwert

Emp. Bestimmtheitsmass r²

FVM

Regressionsgerade

y aus x

Verhältnis der Restvarianzen 1.938

Wasseraufnahmekoeffizient Wₑ = \(\frac{1.3517 \times 0.00084}{1.607 \times 0.00084}\) kg/(m²·h)
A.1.2 Evillard West

Prüfung W3:

| Nr. | Messdatum | Lufttemperatur | Luftfeuchte | Luftgeschwindigkeit | Wetter | Sonnenschein | Messstelle | Prüffläche in m² |
|-----|-----------|----------------|-------------|---------------------|--------|---------------|------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|
| 1   | 28.08.2015 | 27             | 45          | 0.06                | Sonnig | Messstelle im Schatten | 1.00       | 0.1291         | 0.002          | 0.017          | 0.18           | 0.0002         | 0.2           | 0.28169014     |
| 2   | 28.08.2015 | 27             | 45          | 0.06                | Sonnig | Messstelle im Schatten | 2.00       | 0.1826         | 0.002          | 0.033          | 0.21           | 0.0002         | 0.3           | 0.42253521     |
| 3   | 28.08.2015 | 27             | 45          | 0.06                | Sonnig | Messstelle im Schatten | 3.00       | 0.2238         | 0.001          | 0.05           | 0.25           | 0.0002         | 0.4           | 0.56336028     |
| 4   | 28.08.2015 | 27             | 45          | 0.06                | Sonnig | Messstelle im Schatten | 4.00       | 0.2967         | 0.001          | 0.067          | 0.32           | 0.0001         | 0.5           | 0.70422535     |
| 5   | 28.08.2015 | 27             | 45          | 0.06                | Sonnig | Messstelle im Schatten | 5.00       | 0.2867         | 1E-03          | 0.083          | 0.28           | 0.0001         | 0.5           | 0.70422535     |

**Messgenauigkeiten**

- Emp. Standardabweichung $s_{xy}$, $s_{y}$: 0.1988, 0.87123505
- Verhältnis der Restvarianzen $l$: 19.21
- Steigung $b_{yx}$: 4.3237
- Achsenabschnitt $a_{yx}$: -0.482
- Emp. Restvarianz $s^2$: 0.0221
- Emp. Kovarianz $s_{xy}$: 0.0091
- Emp. Varianz der Steigung $s_b^2$: 0.045

Wasseraufnahmekoeffizient $W_w = (4.383 +/- 0.463 (95%)) kg/(m²√h)$

\[
y = 4.3237x - 0.4819
\]

R² = 0.9731
Prüfung W11:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Messdatum:</th>
<th>Luftfeuchte</th>
</tr>
</thead>
<tbody>
<tr>
<td>72</td>
<td>28.08.2015</td>
<td>95</td>
</tr>
</tbody>
</table>

**Messgenauigkeiten**

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Messdatum:</th>
<th>Luftfeuchte</th>
</tr>
</thead>
<tbody>
<tr>
<td>72</td>
<td>28.08.2015</td>
<td>95</td>
</tr>
</tbody>
</table>

**Messgenauigkeit**

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Messdatum:</th>
<th>Luftfeuchte</th>
</tr>
</thead>
<tbody>
<tr>
<td>72</td>
<td>28.08.2015</td>
<td>95</td>
</tr>
</tbody>
</table>

**Fassade West**

Wetter: Sonnig, Messstelle ab ca. 15 Minuten nach Messbeginn in der Sonne

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Messdatum:</th>
</tr>
</thead>
<tbody>
<tr>
<td>72</td>
<td>28.08.2015</td>
</tr>
</tbody>
</table>

**Lufttemperatur**

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Messdatum:</th>
</tr>
</thead>
<tbody>
<tr>
<td>72</td>
<td>28.08.2015</td>
</tr>
</tbody>
</table>

**Luftfeuchte**

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Messdatum:</th>
</tr>
</thead>
<tbody>
<tr>
<td>72</td>
<td>28.08.2015</td>
</tr>
</tbody>
</table>

**Prüfung W11:**

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Messdatum:</th>
<th>Luftfeuchte</th>
</tr>
</thead>
<tbody>
<tr>
<td>72</td>
<td>28.08.2015</td>
<td>95</td>
</tr>
</tbody>
</table>

**Fassadenfeuchte 70.56 Digits Gann Messprotokoll Stand 24.8.15**
Prüfung W18:

Objekt: Evillard
Fassadenfläche: 70,56 Digits Gann
Messprotokoll Stand 24.8.15

<table>
<thead>
<tr>
<th>Nr</th>
<th>Fassade</th>
<th>West</th>
<th>Fassadenfeuchte</th>
<th>04.09.2015; 10:00 Uhr</th>
<th>Luftfeuchte</th>
<th>57</th>
</tr>
</thead>
</table>

Karakteristische Messwerte:

<table>
<thead>
<tr>
<th>Karsten'sches Prüfröhrchen</th>
<th>t in min/h</th>
<th>x aus y</th>
<th>m in kg/m²</th>
<th>y aus x</th>
<th>FVM</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>x</td>
<td>s</td>
<td>y²</td>
<td>s</td>
<td>x</td>
</tr>
<tr>
<td>1.00</td>
<td>0.1291</td>
<td>0.002</td>
<td>0.017</td>
<td>0.017</td>
<td>0.017</td>
</tr>
<tr>
<td>2.00</td>
<td>0.1820</td>
<td>0.003</td>
<td>0.023</td>
<td>0.023</td>
<td>0.023</td>
</tr>
<tr>
<td>3.00</td>
<td>0.2330</td>
<td>0.001</td>
<td>0.024</td>
<td>0.024</td>
<td>0.024</td>
</tr>
<tr>
<td>4.00</td>
<td>0.2980</td>
<td>0.001</td>
<td>0.026</td>
<td>0.026</td>
<td>0.026</td>
</tr>
</tbody>
</table>

Messgenauigkeiten:

<table>
<thead>
<tr>
<th>Zeit in s</th>
<th>Masse in g</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>10.00</td>
</tr>
</tbody>
</table>

Prüffläche in m²: 0.0077

<table>
<thead>
<tr>
<th>Prüffläche in m²</th>
<th>9E-05</th>
<th>0.0077</th>
</tr>
</thead>
</table>

| Prüffläche in m² | 0.0077 | 2 |

Emp. Varianz Mittelwert: 0.124

Emp. lineare Korrelationskoeffizient: 0.9944

Verhältnis der Restvarianzen: 0.107

Regressionsgeraden:

<table>
<thead>
<tr>
<th>y aus x</th>
<th>x aus y</th>
<th>FVM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steigung bx</td>
<td>Steigung by</td>
<td>0.31</td>
</tr>
<tr>
<td>Achsenabschnitt ax</td>
<td>Achsenabschnitt ay</td>
<td>0.0047</td>
</tr>
<tr>
<td>Emp. Restvarianz sb²</td>
<td>Emp. Restvarianz sa²</td>
<td>0.0009</td>
</tr>
<tr>
<td>Emp. Varianz der Steigung s²</td>
<td>Emp. Varianz Mittelwert</td>
<td>0.0016</td>
</tr>
<tr>
<td>Emp. Varianz Mittelwert</td>
<td>0.0016</td>
<td></td>
</tr>
</tbody>
</table>

Wasseraufnahmekoeffizient Ww = (2.174 +/- 0.187 (95%) kg/(m²•h))

FVM

\[
y = 3.1559x - 0.1031
\]

R² = 0.9887
Prüfung W19:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Fassade</th>
<th>Objekt</th>
<th>Messdatum: 04.05.2015, 10:00 Uhr</th>
<th>Lufttemperatur</th>
<th>Luftfeuchte</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>Evilard</td>
<td>Fassadenfeuchte</td>
<td>70.50</td>
<td>40.76</td>
<td>Digits Gann</td>
</tr>
</tbody>
</table>

**Messprotokoll Stand 24.8.15**

Fassade West

Fassadenfeuchte: 70.50 %

**Messgenauigkeiten**

- **Steigung b**: Emp. Kovarianz $s_{b}$
- **Achsenabschnitt a**: Empirische Varianz $s_{a}$
- **Empirische Varianz der Steigung $s_{b}$**: 0.0203
- **Empirische Varianz der Achsenabschnitt $s_{a}$**: 0.0135
- **Empirischer linearer Korrelationskoeffizient $r$**: 0.9875

**Regressionsgeraden**

$u = 2.46478873 \cdot x - 0.142$  

**Wasseraufnahmekoeffizient $W_{w}$**: 3.62 ± 0.313 (95%) kg/(m²·h)

**Prüfung W19**

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Fassade</th>
<th>Objekt</th>
<th>Messdatum: 04.05.2015, 10:00 Uhr</th>
<th>Lufttemperatur</th>
<th>Luftfeuchte</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>Evilard</td>
<td>Fassadenfeuchte</td>
<td>70.50</td>
<td>40.76</td>
<td>Digits Gann</td>
</tr>
</tbody>
</table>

**Messprotokoll Stand 24.8.15**

Fassade West

Fassadenfeuchte: 70.50 %

**Messgenauigkeiten**

- **Steigung b**: Emp. Kovarianz $s_{b}$
- **Achsenabschnitt a**: Empirische Varianz $s_{a}$
- **Empirische Varianz der Steigung $s_{b}$**: 0.0203
- **Empirische Varianz der Achsenabschnitt $s_{a}$**: 0.0135
- **Empirischer linearer Korrelationskoeffizient $r$**: 0.9875

**Regressionsgeraden**

$u = 2.46478873 \cdot x - 0.142$  

**Wasseraufnahmekoeffizient $W_{w}$**: 3.62 ± 0.313 (95%) kg/(m²·h)
### Prüfung W22:

Objekt: Evilard Fassadenfeuchte 70.56

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Messdatum:</th>
<th>Luftfeuchte</th>
<th>Lufttemperatur</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>04.09.2015</td>
<td>57</td>
<td>17</td>
</tr>
</tbody>
</table>

#### Karsten'sches Prüfröhrchen

<table>
<thead>
<tr>
<th>n</th>
<th>X1</th>
<th>s* X1</th>
<th>X1²</th>
<th>Y1</th>
<th>s* Y1</th>
<th>X1* Y1</th>
<th>y²</th>
<th>s² y²</th>
<th>y³</th>
<th>s³ y³</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.00</td>
<td>0.002</td>
<td>0.017</td>
<td>0.16</td>
<td>0.004</td>
<td>0.004</td>
<td>0.073</td>
<td>0.035</td>
<td>0.02</td>
<td>0.055</td>
</tr>
<tr>
<td>2</td>
<td>2.00</td>
<td>0.002</td>
<td>0.033</td>
<td>0.2</td>
<td>0.004</td>
<td>0.004</td>
<td>0.089</td>
<td>0.037</td>
<td>0.03</td>
<td>0.077</td>
</tr>
<tr>
<td>3</td>
<td>3.00</td>
<td>0.001</td>
<td>0.051</td>
<td>0.25</td>
<td>0.004</td>
<td>0.004</td>
<td>0.109</td>
<td>0.045</td>
<td>0.04</td>
<td>0.091</td>
</tr>
<tr>
<td>4</td>
<td>4.00</td>
<td>0.001</td>
<td>0.067</td>
<td>0.27</td>
<td>0.004</td>
<td>0.004</td>
<td>0.163</td>
<td>0.069</td>
<td>0.06</td>
<td>0.129</td>
</tr>
<tr>
<td>5</td>
<td>5.00</td>
<td>0.003</td>
<td>0.083</td>
<td>0.39</td>
<td>0.004</td>
<td>0.004</td>
<td>0.217</td>
<td>0.084</td>
<td>0.08</td>
<td>0.162</td>
</tr>
<tr>
<td>6</td>
<td>6.00</td>
<td>0.001</td>
<td>0.124</td>
<td>0.39</td>
<td>0.004</td>
<td>0.004</td>
<td>0.271</td>
<td>0.104</td>
<td>0.10</td>
<td>0.208</td>
</tr>
<tr>
<td>7</td>
<td>7.00</td>
<td>0.001</td>
<td>0.159</td>
<td>0.42</td>
<td>0.004</td>
<td>0.004</td>
<td>0.343</td>
<td>0.123</td>
<td>0.12</td>
<td>0.246</td>
</tr>
<tr>
<td>8</td>
<td>8.00</td>
<td>0.001</td>
<td>0.194</td>
<td>0.47</td>
<td>0.004</td>
<td>0.004</td>
<td>0.426</td>
<td>0.144</td>
<td>0.14</td>
<td>0.288</td>
</tr>
<tr>
<td>9</td>
<td>9.00</td>
<td>0.001</td>
<td>0.229</td>
<td>0.51</td>
<td>0.004</td>
<td>0.004</td>
<td>0.519</td>
<td>0.166</td>
<td>0.17</td>
<td>0.333</td>
</tr>
<tr>
<td>10</td>
<td>10.00</td>
<td>0.001</td>
<td>0.264</td>
<td>0.56</td>
<td>0.004</td>
<td>0.004</td>
<td>0.623</td>
<td>0.189</td>
<td>0.20</td>
<td>0.381</td>
</tr>
</tbody>
</table>

#### Messgenauigkeiten

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>X1</td>
<td>0.002</td>
<td>0.002</td>
<td>0.001</td>
<td>0.001</td>
<td>0.003</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>X1²</td>
<td>0.017</td>
<td>0.033</td>
<td>0.051</td>
<td>0.067</td>
<td>0.083</td>
<td>0.124</td>
<td>0.159</td>
<td>0.194</td>
<td>0.229</td>
<td>0.264</td>
</tr>
<tr>
<td>Y1</td>
<td>0.004</td>
</tr>
<tr>
<td>Y²</td>
<td>0.073</td>
<td>0.089</td>
<td>0.109</td>
<td>0.163</td>
<td>0.217</td>
<td>0.271</td>
<td>0.343</td>
<td>0.426</td>
<td>0.519</td>
<td>0.623</td>
</tr>
<tr>
<td>Y³</td>
<td>0.035</td>
<td>0.037</td>
<td>0.045</td>
<td>0.069</td>
<td>0.084</td>
<td>0.104</td>
<td>0.123</td>
<td>0.144</td>
<td>0.166</td>
<td>0.189</td>
</tr>
</tbody>
</table>

#### Wasseraufnahmekoeffizient W

\[ W = \left( 3.215 \pm 0.154 \right) \text{ kg/(m}^2\text{√h)} \]
Prüfung W26:

Objekt: Evilard Fassadenfeuchte

<table>
<thead>
<tr>
<th>Fassade</th>
<th>West</th>
<th>Diöts Garn</th>
<th>Messprotokoll Stand 24.15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nr.</td>
<td>26</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>Datum</td>
<td>04.09.2015</td>
<td>10:00 Uhr</td>
<td></td>
</tr>
</tbody>
</table>

| Karstersches Prüfprisma | \[ \begin{array}{cccccc}
 n & x_i & y_i & x_i^2 & y_i^2 & x_i y_i \\
 1 & 1.00 & 0.1291 & 0.002 & 0.017 & 0.18 & 8E-05 & 0.1 & 0.1408 & 0.073 & 0.02 & -0.11 & 0.106 & 0.02780131 & 0.018 \\
 2 & 2.99 & 0.1628 & 0.023 & 0.033 & 0.2 & 7E-05 & 0.2 & 0.2817 & 0.08 & 0.079 & 0.163 & 0.176 & 0.002157299 & 0.051 \\
 3 & 3.00 & 0.203 & 0.001 & 0.05 & 0.23 & 6E-05 & 0.3 & 0.4293 & 0.09 & 0.179 & 0.398 & 0.367 & 0.001785432 & 0.084 \\
 4 & 4.00 & 0.259 & 0.001 & 0.067 & 0.26 & 5E-05 & 0.4 & 0.5634 & 0.10 & 0.317 & 0.579 & 0.574 & 0.0017476598 & 0.145 \\
 5 & 5.00 & 0.289717E-03 & 0.083 & 0.28 & 5E-05 & 0.5 & 0.7042 & 0.117 & 0.496 & 0.739 & 0.734 & 0.001267036 & 0.203 \\
 6 & 6.00 & 0.31627E-03 & 0.1 & 0.31 & 4E-05 & 0.6 & 0.8451 & 0.132 & 0.714 & 0.863 & 0.888 & 0.001111681 & 0.267 \\
 \end{array} \] |

Messgenauigkeiten

- Zeit in s: \[ 7.99 \pm 0.01 \] s
- Masse in g: \[ 9.00 \pm 0.05 \] g
- Prüffläche in m\(^2\): \[ 10.00 \pm 0.01 \] m\(^2\)
- Prüffläche in m\(^2\): \[ 15.00 \pm 0.01 \] m\(^2\)
- Lufttemperatur: \[ 21.00 \pm 0.15 \] °C
- Wasseraufnahmekoeffizient: \[ W = 18.00 \pm 0.08 \] kg/(m\(^2\)h)

|
| Emp. Varianz der Steigung \( s_b \) | 0.0413 |
| Emp. Standardabweichung \( s_s \) | 0.2031 |
| Emp. Varianz der Steigung \( s_d \) | 0.0197 |
| Emp. Varianz der Steigung \( s_d \) | 0.0046 |

Regressionsgeraden

- \( y = 5.2389x - 0.7736 \)
- \( R^2 = 0.9893 \)

Wasseraufnahmekoeffizient: \[ W_a = (5.267 \pm 0.305) \text{ (95\%)} \text{ kg/(m}^2\text{h)}]
Prüfung W27:

Objekt: Evilard Fassadenfeuchte

Fassade: West

Wetter: Sonnig, Messstelle im Schatten

Messdatum: 04.09.2015; 10:00 Uhr

Lufttemperatur: 17 °C

Luftfeuchte: 57 %

Messgenauigkeiten:

- Zeit in s
- Masse in g
- Prüffläche in m²

Tabelle:

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
<th>s_x</th>
<th>s_y</th>
<th>r</th>
<th>r²</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2</td>
<td>0.441</td>
<td>1.2759</td>
<td>0.9906</td>
<td>0.981</td>
</tr>
</tbody>
</table>

Empirische Kovarianz s_{xy} = 0.00201

Empirische Varianz s_{x}² = 0.0998

Empirischer Korrelationskoeffizient r = 0.9906

Empirische Bestimmtheitsmass r² = 0.981

Empirische Varianz der Steigung s_{b}² = 0.0278

Empirischer Mittelwert a_{xy} = -0.788

Empirischer Varianz der Achseabschnitt a_{xy}² = 0.174

Wasseraufnahmekoeffizient W_{w} = 4.6808 ± 0.363 (95%) kg/(m² √h)

y = 4.6808x - 0.7885

R² = 0.9813
**Prüfung W28:**

<table>
<thead>
<tr>
<th>Fassade</th>
<th>Fassadenfeuchte</th>
<th>West</th>
<th>Sonnig, Messstelle im Schatten</th>
<th>Luftfeuchte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nr.</td>
<td>28</td>
<td>70.56</td>
<td>17</td>
<td>57</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Karsten'sches Prüfröhren</th>
<th>FVM</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>x</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>1</td>
<td>1.00</td>
</tr>
<tr>
<td>2</td>
<td>2.00</td>
</tr>
<tr>
<td>3</td>
<td>3.00</td>
</tr>
<tr>
<td>4</td>
<td>4.00</td>
</tr>
<tr>
<td>5</td>
<td>5.00</td>
</tr>
<tr>
<td>6</td>
<td>6.00</td>
</tr>
<tr>
<td>7</td>
<td>7.00</td>
</tr>
<tr>
<td>8</td>
<td>8.00</td>
</tr>
<tr>
<td>9</td>
<td>9.00</td>
</tr>
<tr>
<td>10</td>
<td>10.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Archivwerte</th>
<th>FVM</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>x</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>1</td>
<td>1.00</td>
</tr>
<tr>
<td>2</td>
<td>2.00</td>
</tr>
<tr>
<td>3</td>
<td>3.00</td>
</tr>
<tr>
<td>4</td>
<td>4.00</td>
</tr>
<tr>
<td>5</td>
<td>5.00</td>
</tr>
<tr>
<td>6</td>
<td>6.00</td>
</tr>
<tr>
<td>7</td>
<td>7.00</td>
</tr>
<tr>
<td>8</td>
<td>8.00</td>
</tr>
<tr>
<td>9</td>
<td>9.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Masse in g</th>
<th>9E-05</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>y</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>1</td>
<td>1.00</td>
</tr>
<tr>
<td>2</td>
<td>2.00</td>
</tr>
<tr>
<td>3</td>
<td>3.00</td>
</tr>
<tr>
<td>4</td>
<td>4.00</td>
</tr>
<tr>
<td>5</td>
<td>5.00</td>
</tr>
<tr>
<td>6</td>
<td>6.00</td>
</tr>
<tr>
<td>7</td>
<td>7.00</td>
</tr>
<tr>
<td>8</td>
<td>8.00</td>
</tr>
<tr>
<td>9</td>
<td>9.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prüffläche in m²</th>
<th>9E-05</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>y</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>1</td>
<td>1.00</td>
</tr>
<tr>
<td>2</td>
<td>2.00</td>
</tr>
<tr>
<td>3</td>
<td>3.00</td>
</tr>
<tr>
<td>4</td>
<td>4.00</td>
</tr>
<tr>
<td>5</td>
<td>5.00</td>
</tr>
<tr>
<td>6</td>
<td>6.00</td>
</tr>
<tr>
<td>7</td>
<td>7.00</td>
</tr>
<tr>
<td>8</td>
<td>8.00</td>
</tr>
<tr>
<td>9</td>
<td>9.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Summen</th>
<th>17</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>1.4979</td>
</tr>
<tr>
<td>y</td>
<td>0.54</td>
</tr>
<tr>
<td>Mittelwert</td>
<td>0.713</td>
</tr>
</tbody>
</table>

| Empirische Varianz s² | 0.013 |
| Emp. Standardabweichung s | 20.7 |

| Emp. Kovarianz s xy | 0.11 |

<table>
<thead>
<tr>
<th>Regressionsgeraden</th>
<th>FVM</th>
<th>2.861</th>
</tr>
</thead>
<tbody>
<tr>
<td>y aus x</td>
<td>x aus y</td>
<td>0.954</td>
</tr>
<tr>
<td>Steigung b</td>
<td>2.677</td>
<td></td>
</tr>
<tr>
<td>Achsenabschnitt a</td>
<td>-0.17</td>
<td></td>
</tr>
<tr>
<td>Emp. Restvarianz s²</td>
<td>0.0031</td>
<td></td>
</tr>
<tr>
<td>Emp. Varianz der Steigung s²</td>
<td>0.0048</td>
<td></td>
</tr>
<tr>
<td>Emp. Varianz Mittelwert</td>
<td>0.0011</td>
<td></td>
</tr>
</tbody>
</table>

Wasseraufnahmekoeffizient W = 2.691 (+/- 0.157) (95%) kg/(m² h)

---

**Messgenauigkeiten**

- BFH AHB 0.033
- Digits Gann 0.001
- BFH AHB 0.005
- Digits Gann 0.001
- Karsten'sches Prüfröhrchen 0.001

**Prüfung**

- Wasseraufnahmekoeffizient W (95%) kg/(m² h)
- Emp. Varianz der Steigung s²
- Emp. Restvarianz s²
- Emp. Kovarianz s xy
- Emp. Standardabweichung s
- Mittelwert

**Regressionsgeraden**

- y = 2.677x - 0.1702
- R² = 0.9901

---

**Diagramm**

- y aus x
- Messwerte
- x aus y
- FVM
- Linear (Messwerte)
Prüfung W32:

Objekt: Evilard Fassadenfeuchte 70.56 Digits Gann Messprotokoll Stand 24.8.15

Fassade West Wetter Sonnig, Messstelle im Schatten

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Messdatum:</th>
<th>Lufttemperatur</th>
<th>Luftfeuchte</th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
<td>04.09.2015</td>
<td>17</td>
<td>57</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zeit in s</th>
<th>Masse in g</th>
<th>Prüffläche in m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0.05</td>
<td>9.9E-05</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>in min</th>
<th>in kg/m²</th>
<th>y aus x</th>
<th>FVM</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0.1291</td>
<td>0.002</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>0.2817</td>
<td>0.008</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>0.3416</td>
<td>0.009</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>0.3873</td>
<td>0.010</td>
</tr>
</tbody>
</table>

|        | 5        | 0.4225  | 0.011|
|        | 6        | 0.4671  | 0.012|
|        | 7        | 0.5067  | 0.013|
|        | 8        | 0.5453  | 0.014|
|        | 9        | 0.5841  | 0.015|

|        | 10       | 0.6227  | 0.016|
|        | 11       | 0.6613  | 0.017|
|        | 12       | 0.7009  | 0.018|
|        | 13       | 0.7404  | 0.019|
|        | 14       | 0.7799  | 0.020|
|        | 15       | 0.8194  | 0.021|

|        | 16       | 0.8589  | 0.022|
|        | 17       | 0.8984  | 0.023|
|        | 18       | 0.9379  | 0.024|

Zusätzliche Berechnungen:

- Empirische lineare Kovarianz $s_{xy} = 0.004$
- Empirische lineare Regressionsgeraden $y = 5.3981x - 0.5874$, $R^2 = 0.9922$
- Wasseraufnahmekoeffizient $W_w = 5.419 \pm 0.279$ (95%)
- Empirischer linearer Korrelationskoeffizient $r = 0.9961$
- Empirische Bestimmtheitsmass $r^2 = 0.992$
- Empirische Varianz der Steigung $s_b^2 = 0.0164$
- Empirischer Achsenabschnitt $b_y = 0.111$
- Empirische Kovarianz $s_{xy} = 0.004$
- Empirischer Steigungskoeffizient $b_x = 5.3981$
- Prüfverhältnis $29.37$
- Empirischer linearer Korrelationskoeffizient $r = 0.9961$
- Empirische Bestimmtheitsmass $r^2 = 0.992$
- Empirische Varianz der Steigung $s_b^2 = 0.0164$
- Empirischer Achsenabschnitt $b_y = 0.111$
- Empirische Kovarianz $s_{xy} = 0.004$
- Empirischer Steigungskoeffizient $b_x = 5.3981$
- Prüfverhältnis $29.37$
- Empirischer linearer Korrelationskoeffizient $r = 0.9961$
- Empirische Bestimmtheitsmass $r^2 = 0.992$
- Empirische Varianz der Steigung $s_b^2 = 0.0164$
- Empirischer Achsenabschnitt $b_y = 0.111$
- Empirische Kovarianz $s_{xy} = 0.004$
- Empirischer Steigungskoeffizient $b_x = 5.3981$
- Prüfverhältnis $29.37$
- Empirischer linearer Korrelationskoeffizient $r = 0.9961$
- Empirische Bestimmtheitsmass $r^2 = 0.992$
Prüfung W33:

Objekt: Evilard
Fassadenfeuchte: 70.56
Digs Gann
Messprotokoll Stand 24.8.15

Wetter: Sonnig
Messstelle im Schatten Lufttemperatur: 17

Messdatum: 04.09.2015, 10:00 Uhr
Lufteufche: 57

Korsten'sches Prüfröhrchen

<table>
<thead>
<tr>
<th>n</th>
<th>x_i</th>
<th>x_i^2</th>
<th>y_i</th>
<th>y_i^2</th>
<th>x_i*y_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.00</td>
<td>1.291</td>
<td>0.02</td>
<td>0.17</td>
<td>0.18</td>
</tr>
<tr>
<td>2</td>
<td>2.00</td>
<td>0.162</td>
<td>0.02</td>
<td>0.03</td>
<td>0.18</td>
</tr>
<tr>
<td>3</td>
<td>3.00</td>
<td>0.226</td>
<td>0.01</td>
<td>0.05</td>
<td>0.22</td>
</tr>
<tr>
<td>4</td>
<td>4.00</td>
<td>0.335</td>
<td>0.01</td>
<td>0.07</td>
<td>0.34</td>
</tr>
<tr>
<td>5</td>
<td>5.00</td>
<td>0.162</td>
<td>0.02</td>
<td>0.03</td>
<td>0.19</td>
</tr>
</tbody>
</table>

Messgenauigkeiten

| Zeit in s | 2 | 7.00 | 0.3416 |
| Masse in g | 0.05 | 9.00 | 0.3673 |
| Prüffläche in m² | 9E-05 | 10.00 | 0.4042 |
| Prüffläche in m² | 0.0007 | 12.00 | 0.4472 |
| 15.00 | 0.571 |
| 18.00 | 0.5777 |
| 21.00 | 0.5916 |
| 25.00 | 0.6455 |
| 28.00 | 0.6931 |
| 32.00 | 0.7307 |
| 40.00 | 0.8165 |

Summen

| x | 7.1812 |
| y | 3.867 |

Mittelwert: x = 7.1812
Emp. Varianz der Steigung: b

Steigung b_x = 3.0486
Achsabschnitt a_y = -0.396
Emp. Restvarianz: s

Emp. Varianz der Steigung: s

Wasseraufnahmekoeffizient W = (3.0468 - 0.3956) kg/(m²·h)
Prüfung W38:

Objekt: Evilard Fassadenfeuchte 70.56 Digits Gann Messprotokoll Stand 24.8.15

Fassade: West
Wetter: Sonnig, Messstelle im Schatten

Lufttemperatur 17°C

Messdatum: 04.09.2015; 10:00 Uhr

Luftefeuchte 57%

Messgenauigkeiten

Messwerte:

<table>
<thead>
<tr>
<th>Zeit in s</th>
<th>Masse in g</th>
<th>Prüffläche in m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7.00</td>
<td>0.3416 8E-04</td>
</tr>
<tr>
<td>2</td>
<td>10.00</td>
<td>0.4082 7E-04</td>
</tr>
</tbody>
</table>

Zusätzliche Berechnungen:

Emp. linearer Korrelationskoeffizient r 0.9964
Emp. Bestimmtheitsmass r² 0.9933

Regressionsgeraden:

Steigung bₓ, Achsenabschnitt aₓ, Emp. Restvarianz sₓ²

Emp. Varianz der Steigung sₓ² Emp. Varianz Mittelwert Sₓ₂ (x=0) 0.0021

Wasseraufnahmekoeffizient Wₓ = (4.1254 ± 0.207 (95%)) kg/(m² √h)
A.2 Auswertung und Regressionsgeraden Franke'sche Prüfplatte

A.2.1 Evilard Nord

Prüfung N1_stud:

<table>
<thead>
<tr>
<th>Objekt</th>
<th>Evilard</th>
<th>Fassadenfeuchte</th>
<th>80.8 Digits Gann</th>
<th>Messprotokoll Stand 24.8.15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fassade</td>
<td>Nord</td>
<td>Weiter</td>
<td>bewölkt</td>
<td>Lufttemperatur</td>
</tr>
<tr>
<td>Nr.</td>
<td>1 stud</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Messeid</td>
<td>29.04.2015</td>
<td>15:47 Uhr</td>
<td>Luftfeuchte</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Frankesche Prüfplatte</th>
<th>y aus x</th>
<th>x aus y</th>
<th>FVM</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>x</td>
<td>s²</td>
<td>y</td>
</tr>
<tr>
<td>1</td>
<td>1.00</td>
<td>0.1291</td>
<td>0.02</td>
</tr>
<tr>
<td>2</td>
<td>1.00</td>
<td>0.1829</td>
<td>0.02</td>
</tr>
<tr>
<td>3</td>
<td>1.00</td>
<td>0.2563</td>
<td>0.02</td>
</tr>
</tbody>
</table>

Mittelwerte:

Frankesche Prüfplatte:

<table>
<thead>
<tr>
<th>Objekt</th>
<th>Evilard</th>
<th>Fassadenfeuchte</th>
<th>80.8 Digits Gann</th>
<th>Messprotokoll Stand 24.8.15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fassade</td>
<td>Nord</td>
<td>Weiter</td>
<td>bewölkt</td>
<td>Lufttemperatur</td>
</tr>
<tr>
<td>Nr.</td>
<td>1 stud</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Messeid</td>
<td>29.04.2015</td>
<td>15:47 Uhr</td>
<td>Luftfeuchte</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Frankesche Prüfplatte</th>
<th>y aus x</th>
<th>x aus y</th>
<th>FVM</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>x</td>
<td>s²</td>
<td>y</td>
</tr>
<tr>
<td>1</td>
<td>1.00</td>
<td>0.1291</td>
<td>0.02</td>
</tr>
<tr>
<td>2</td>
<td>1.00</td>
<td>0.1829</td>
<td>0.02</td>
</tr>
<tr>
<td>3</td>
<td>1.00</td>
<td>0.2563</td>
<td>0.02</td>
</tr>
</tbody>
</table>

Mittelwerte:

Frankesche Prüfplatte:

\[ y = 0.8563x - 0.0423 \]
\[ R^2 = 0.9187 \]
Prüfung N2\_stud:

Objekt: Evilard Fassadenfeuchte 80.8 Digits Gann
Messprotokoll Stand 24.8.15

Fassade: Nord
Wetter: bewölk
Lufttemperatur: 15

Messdatum: 29.04.2015; 15:47 Uhr
Luftfeuchte: 42

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Messdatum</th>
<th>Lufttemperatur</th>
<th>Luftfeuchte</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>29.04.2015</td>
<td>15</td>
<td>42</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Fassade</th>
<th>Zeit in s</th>
<th>Masse in g</th>
<th>Prüffläche in m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1.00</td>
<td>0.1291</td>
<td>0.0002</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>2.00</td>
<td>0.1826</td>
<td>0.0002</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>3.00</td>
<td>0.2366</td>
<td>0.0001</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>4.00</td>
<td>0.2888</td>
<td>0.0001</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>5.00</td>
<td>0.3316</td>
<td>0.0001</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Fassade</th>
<th>Zeit in s</th>
<th>Masse in g</th>
<th>Prüffläche in m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>1</td>
<td>6.00</td>
<td>0.3651</td>
<td>0.0007</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>7.00</td>
<td>0.4165</td>
<td>0.0007</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>8.00</td>
<td>0.468</td>
<td>0.0007</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>9.00</td>
<td>0.5165</td>
<td>0.0007</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>10.00</td>
<td>0.5645</td>
<td>0.0007</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Fassade</th>
<th>Zeit in s</th>
<th>Masse in g</th>
<th>Prüffläche in m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>1</td>
<td>11.00</td>
<td>0.6145</td>
<td>0.0007</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>12.00</td>
<td>0.6635</td>
<td>0.0007</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>13.00</td>
<td>0.7125</td>
<td>0.0007</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>14.00</td>
<td>0.7615</td>
<td>0.0007</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>15.00</td>
<td>0.8105</td>
<td>0.0007</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Fassade</th>
<th>Zeit in s</th>
<th>Masse in g</th>
<th>Prüffläche in m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>1</td>
<td>16.00</td>
<td>0.8605</td>
<td>0.0007</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>17.00</td>
<td>0.9095</td>
<td>0.0007</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>18.00</td>
<td>0.9585</td>
<td>0.0007</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>19.00</td>
<td>1.0075</td>
<td>0.0007</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>20.00</td>
<td>1.0565</td>
<td>0.0007</td>
</tr>
</tbody>
</table>

Empirische Korrelationskoeffizient $r$: 0.9885
Empir. Bestimmtheitsmass $r^2$: 0.98

$y = 0.7419x + 0.052$
$R^2 = 0.9791$

Wasseraufnahmekoeffizient $W_a = (0.75 +/\pm 0.127) \text{ kg/(m}^2\text{h})$
Prüfung N1:

Objekt: Evilard
Fassadenfeuchte: 80.8

Fassade: Nord
Wetter: Digits Gann
Messprotokoll Stand: 24.8.15

Masse in g
Zeit in s
Wasseraufnahmekoeffizient W

Franke'sche Prüfplatte

<table>
<thead>
<tr>
<th>x aus y</th>
<th>y aus x</th>
<th>FVM</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>y</td>
<td></td>
</tr>
</tbody>
</table>

Empirische Varianz sx
Emp. Kovarianz sxy
Emp. linearer Korrelationskoeffizient r
Emp. Bestimmtheitsmass r²

Regressionsgeraden

y = 0.955x - 0.0699
R² = 0.9923

Wasseraufnahmekoeffizient W = (0.96 +/- 0.076) kg/(m²/h)

BFH AHB
72FE-006970-F-01_Aussenputze_MB_15.12.31
71
Prüfung N2:

Objekt: Evilard
Fassadenleuchte: 80.8

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Datum: 12.08.2015, 10:00 Uhr</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Massivprüfung

<table>
<thead>
<tr>
<th>x aus y</th>
<th>m in g</th>
<th>y aus x</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.00</td>
<td>0.02</td>
</tr>
<tr>
<td>2</td>
<td>2.00</td>
<td>0.02</td>
</tr>
<tr>
<td>3</td>
<td>3.00</td>
<td>0.02</td>
</tr>
<tr>
<td>4</td>
<td>4.00</td>
<td>0.02</td>
</tr>
</tbody>
</table>

Messgenauigkeiten:
- Prüfboden in m²: 0.0005
- Prüfprall in m³: 0.0207

Verhältnis der Restvarianzen

| Emp. Kovarianz s<sub>xy</sub> | 0.03 |

Regressionsgeraden

<table>
<thead>
<tr>
<th>Steigung b&lt;sub&gt;y&lt;/sub&gt;</th>
<th>Achsenabschnitt a&lt;sub&gt;x&lt;/sub&gt;</th>
<th>Emp. Kovarianz s&lt;sub&gt;xy&lt;/sub&gt;</th>
<th>Emp. Standardabweichung σ&lt;sub&gt;y&lt;/sub&gt;</th>
<th>Emp. Restvarianz s&lt;sub&gt;y&lt;/sub&gt;</th>
<th>Emp. Varianz der Steigung s&lt;sub&gt;y&lt;/sub&gt;</th>
<th>Emp. Kovarianz s&lt;sub&gt;y&lt;/sub&gt;</th>
<th>Emp. Varianz Mittelwert s&lt;sub&gt;y&lt;/sub&gt;</th>
<th>y aus x</th>
<th>y aus y</th>
<th>FVM</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5801</td>
<td>-0.142</td>
<td>0.0015</td>
<td>0.0222</td>
<td>0.0022</td>
<td>0.0006</td>
<td>0.0006</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Wasseraufnahmekoeffizient W<sub>u</sub> = (0.6 ± 0.199) kg/(m²·h)
<table>
<thead>
<tr>
<th>y aus x</th>
<th>Messwerte</th>
<th>x aus y</th>
<th>FVM</th>
<th>---- Linear (Messwerte)</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>y = 0.7642x + 0.0219</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>R² = 0.9886</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Prüfung N4:
Objekt: Evilard
Fassadenfeuchte nicht gemessen

Digits Gann
Messprotokoll Stand 24.8.15
Fassade: Nord
Wetter: sonnig, Fassade im Schatten
Lufttemperatur: 17

Prüfplatte
Summen:

Mittelwert
Empirische Varianz sx
Emp. Standardabweichung s_x
Emp. Kovarianz s_xy

Regressionsgeraden

Steigung b_y = 1.4812
Achsenabschnitt a_y = -0.255
Emp. Restvarianz s^2 = 0.0005
Emp. Varianz der Steigung s^2 =
Emp. Varianz Mittelwert 1E-04

Wasseraufnahmekoeffizient W_w = (1.48 +/- 0.065) kg/(m²√h)

Aufgesaugte Wassermasse in kg/m²

y = 1.4812x - 0.2549
R² = 0.998
### A.2.2 Evilard West

**Prüfung W1_stud:**

<table>
<thead>
<tr>
<th>Nr.</th>
<th>2 stud</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Messdatum:</strong></td>
<td>29.04.2015, 19:07</td>
</tr>
<tr>
<td><strong>Luftfeuchtigkeit:</strong></td>
<td>57</td>
</tr>
</tbody>
</table>

#### Frankische Prüfpläte

<table>
<thead>
<tr>
<th>n</th>
<th>$x_i$</th>
<th>$y_i$, $s_{x_i}$</th>
<th>$s_{y_i}$</th>
<th>$s_{x_i}^2$</th>
<th>$s_{y_i}^2$</th>
<th>$s_{x_i}^2$</th>
<th>$s_{y_i}^2$</th>
<th>$s_{xy}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.00</td>
<td>0.1289</td>
<td>0.002</td>
<td>0.017</td>
<td>0.12</td>
<td>5E-05</td>
<td>0.04887586</td>
<td>0.049</td>
</tr>
<tr>
<td>2</td>
<td>2.00</td>
<td>0.1860</td>
<td>0.002</td>
<td>0.030</td>
<td>0.19</td>
<td>3E-05</td>
<td>0.19063734</td>
<td>0.049</td>
</tr>
<tr>
<td>3</td>
<td>3.00</td>
<td>0.2329</td>
<td>0.001</td>
<td>0.05</td>
<td>0.22</td>
<td>2E-05</td>
<td>0.24237969</td>
<td>0.049</td>
</tr>
<tr>
<td>4</td>
<td>4.50</td>
<td>0.2995</td>
<td>0.003</td>
<td>0.071</td>
<td>0.26</td>
<td>1E-05</td>
<td>0.34218997</td>
<td>0.055</td>
</tr>
</tbody>
</table>

#### Messgenauigkeiten

| Zeit in s | 6.00 | 0.3167 | 8E-04 | 0.1 | 0.30 | 1E-05 | 0.43966277 | 0.00 | 0.19 | 0.45 | 0 | 0.346 | 5.7999E-05 | 0.129 |
| Masse in g | 7.00 | 0.3418 | 6E-04 | 0.117 | 0.34 | 1E-05 | 0.48875869 | 0.005 | 0.239 | 0.3 | 0 | 0.497 | 5.7501E-05 | 0.167 |
| Prüffläche in m² | 8.00 | 0.3645 | 1E-04 | 0.120 | 0.36 | 1E-05 | 0.55763417 | 0.005 | 0.289 | 0.54 | 0 | 0.544 | 6.1996E-05 | 0.196 |

#### Summen

| 12 | 3.975 | 1.5 | 0.71487507 | 0.452 | 2.257 |

#### Mittelwert

| $x$, $y$ | 0.3315 | 0.4783999 |

#### Empirische Varianz

| 1.08 | 0.0005 | 0.3083 |

#### Emp. Standardabweichung

| $s_y$ | 0.1294 | 0.25767476 |

#### Emp. Kovarianz

| $s_{xy}$ | 0.003 |

#### Emp. linearer Korrelationskoeffizient $r$ | 0.9962 | $\text{Emp. Bestimmtheitsmass } r^2$ | 0.99 |

#### Regressionsgeraden

- $y$ aus $x$:
  - $y$ aus $x$:
  - $x$ aus $y$:
  - $x$ aus $y$:
  - $x$ aus $y$:
  - $x$ aus $y$:

#### Wasseraufnahmekoeffizient $W_e = \left( 2 \times \gamma \times 0.137 \right) \text{kg/(m²·h)}$

#### Korrektur der Fläche wegen Luftdreck

| Fläche unkorrigiert | 0.027 m² |
| Fläche Dreck | 0.009 m² |
| Fläche korrigiert | 0.018 m² |

#### Aufgetragene Wassermasse in kg/m²

| $y = 1.9947x - 0.1847$ |
| $R^2 = 0.9925$ |
Prüfung W1:

Objekt: Evard
Fassadenfeuchte: 70.56 %
Messprotokoll Stand 24.8.15
Wetter: sonnig, Fassade im Schatten
Lufttemperatur: 20.00°C, Luftfeuchte: 3.40 %

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Messdatum</th>
<th>08:00 Uhr</th>
<th>Luftfeuchte</th>
<th>Lufttemperatur</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>08:00 Uhr</td>
<td>70.56 %</td>
<td>20.00°C</td>
<td>3.40 %</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fassadenplatte</th>
<th>x in m in th</th>
<th>x aus y</th>
<th>m in kg/m²</th>
<th>y aus x</th>
<th>FVM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.00</td>
<td>0.002</td>
<td>0.077</td>
<td>0.077</td>
<td>0.077</td>
</tr>
<tr>
<td>2</td>
<td>2.00</td>
<td>0.003</td>
<td>0.088</td>
<td>0.088</td>
<td>0.088</td>
</tr>
<tr>
<td>3</td>
<td>3.00</td>
<td>0.004</td>
<td>0.099</td>
<td>0.099</td>
<td>0.099</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fraktionsprüfung</th>
<th>x in m in th</th>
<th>x aus y</th>
<th>m in kg/m²</th>
<th>y aus x</th>
<th>FVM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.00</td>
<td>0.002</td>
<td>0.077</td>
<td>0.077</td>
<td>0.077</td>
</tr>
<tr>
<td>2</td>
<td>2.00</td>
<td>0.003</td>
<td>0.088</td>
<td>0.088</td>
<td>0.088</td>
</tr>
<tr>
<td>3</td>
<td>3.00</td>
<td>0.004</td>
<td>0.099</td>
<td>0.099</td>
<td>0.099</td>
</tr>
</tbody>
</table>

Messgenauigkeiten:
- Zeit in s
- Masse in g
- Prüffläche in m²

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Masse in g</th>
<th>Prüffläche in m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7.076</td>
<td>0.0036</td>
</tr>
<tr>
<td>2</td>
<td>10.000</td>
<td>0.0036</td>
</tr>
</tbody>
</table>

Summen:
- Mittelwert
- Emp. Varianz Mittelwert
- Emp. Standardabweichung
- Emp. Kovarianz

<table>
<thead>
<tr>
<th>Nr.</th>
<th>y aus x</th>
<th>x aus y</th>
<th>FVM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7.076</td>
<td>0.0036</td>
<td>0.077</td>
</tr>
</tbody>
</table>

Verhältnis der Restvarianz: 3.568

Wasseraufnahmekoeffizient W = (1.89 +/- 0.153) kg/(m²·h)

Korrektur der Fläche wegen Luft Dreieck
- Fläche untergr.: 0.0207 m²
- Fläche Dreieck: 0.076 m²
- Fläche korrigiert: 0.0203 m²

y = 1.8753x - 0.2128
R² = 0.9858

76 72FE.006970-F-01_Aussenputze_MB_15.12.31 BFH AHB
### Prüfung W2:

#### Objekt: Evilard
#### Fassade: West
#### Messprotokoll Stand 24.8.15

**Fassadenfeuchte: 70.56 Digits Gann**

<table>
<thead>
<tr>
<th>Time in min</th>
<th>x aus y</th>
<th>y aus x</th>
<th>FVM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prüffläche in m²</th>
<th>0.0005</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.800</td>
<td>0.3651</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prüffläche in m²</th>
<th>0.0207</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.000</td>
<td>0.3873</td>
</tr>
</tbody>
</table>

**Ziel in s**

<table>
<thead>
<tr>
<th>Mass in g</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.700</td>
<td>0.3418</td>
</tr>
</tbody>
</table>

**Prüffläche in m²**

<table>
<thead>
<tr>
<th>8.000</th>
<th>0.3651</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.000</td>
<td>0.3734</td>
</tr>
</tbody>
</table>

**Summen**

<table>
<thead>
<tr>
<th>8.4694</th>
<th>4.583</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.7874396</td>
<td>13.27</td>
</tr>
<tr>
<td>7.76861</td>
<td></td>
</tr>
</tbody>
</table>

**Mittelwert**

<table>
<thead>
<tr>
<th>0.4499</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1813</td>
</tr>
<tr>
<td>0.42597563</td>
</tr>
</tbody>
</table>

**Emp. Kovarianz s_yx**

| 0.0915 |

**Emp. linearer Korrelationskoeffizient r**

| 0.9989 |

**Emp. Bestimmtheitsmass r²**

| 1 |

#### Regressionsgeraden

<table>
<thead>
<tr>
<th>Steigung b_yx</th>
<th>2.0883</th>
</tr>
</thead>
<tbody>
<tr>
<td>Achsenschnitt a_yx</td>
<td>0.17</td>
</tr>
<tr>
<td>Emp. Kovarianz s_yx</td>
<td>0.0005</td>
</tr>
<tr>
<td>Emp. Varianz der Steigung s_yx</td>
<td>0.0006</td>
</tr>
<tr>
<td>Emp. Varianz Mittelwert s_yx²</td>
<td>0.0001</td>
</tr>
</tbody>
</table>

| Wasseraufnahmekoeffizient W | (2.01 +/- 0.054) kg/(m²·h) |

**Korrektur der Fläche wegen Luftdreieck**

<table>
<thead>
<tr>
<th>Fläche unkorr.</th>
<th>0.0207 m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fläche Dreieck</td>
<td>m²</td>
</tr>
<tr>
<td>Fläche korrigiert</td>
<td>0.0000 m²</td>
</tr>
</tbody>
</table>

---

**Varianz**

<table>
<thead>
<tr>
<th>y aus x</th>
<th>x aus y</th>
<th>FVM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Wasserabgang**

| y = 2.0083x - 0.1696 |
| R² = 0.9978 |

BFH AHB 72FE-006970-F-01_Aussenputze_MB_15.12.31 77
Prüfung W3:

Objekt: Evilard Fassadenfeuchte 70.56 Digits Gann Messprotokoll Stand 24.8.15

Fassade: West
Wetter: sonnig, Fassade im Schatten
Lufttemperatur: 24

Nr.: 3
Messdatum: 28.08.2015, 10.30 Uhr
Luftfeuchte: 52%

Frankische Prüfplatte

<table>
<thead>
<tr>
<th>in m Gregory</th>
<th>x aus y</th>
<th>in kg/m²</th>
<th>y aus x</th>
<th>FVM</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>x</td>
<td>+/−x</td>
<td>x²</td>
<td>y</td>
</tr>
<tr>
<td>1</td>
<td>1,00</td>
<td>0,2572</td>
<td>0,01</td>
<td>2,05</td>
</tr>
<tr>
<td>2</td>
<td>2,00</td>
<td>0,2760</td>
<td>0,01</td>
<td>4,00</td>
</tr>
<tr>
<td>3</td>
<td>3,00</td>
<td>0,2700</td>
<td>0,01</td>
<td>6,00</td>
</tr>
<tr>
<td>4</td>
<td>4,00</td>
<td>0,2500</td>
<td>0,01</td>
<td>8,00</td>
</tr>
</tbody>
</table>

Kommentar:

Emp. linearer Korrelationskoeffizient r = 0.9969
Emp. Bestimmtheitsmass r² = 0.9887

Wasseraufnahmekoeffizient W = (1.51 +/- 0.095) kg/(m²√h)
### A.3 Auswertung WAM-Messung

#### A.3.1 Evilard Nord

**WAM N1:**

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Messprotokoll Stand 14.8.15</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Messprotokoll Stand 24.8.15</td>
</tr>
</tbody>
</table>

**Messprotokoll Stand 14.8.15**

<table>
<thead>
<tr>
<th>n</th>
<th>x</th>
<th>y</th>
<th>x²</th>
<th>y²</th>
<th>x²y</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.31</td>
<td>0.0716</td>
<td>0.005</td>
<td>0.105</td>
<td>6E-06</td>
</tr>
<tr>
<td>2</td>
<td>0.28</td>
<td>0.0897</td>
<td>0.001</td>
<td>0.046</td>
<td>0E-06</td>
</tr>
<tr>
<td>3</td>
<td>0.28</td>
<td>0.0997</td>
<td>0.001</td>
<td>0.046</td>
<td>0E-06</td>
</tr>
<tr>
<td>4</td>
<td>0.28</td>
<td>0.1097</td>
<td>0.001</td>
<td>0.046</td>
<td>0E-06</td>
</tr>
<tr>
<td>5</td>
<td>0.27</td>
<td>0.1197</td>
<td>0.001</td>
<td>0.046</td>
<td>0E-06</td>
</tr>
<tr>
<td>6</td>
<td>0.27</td>
<td>0.1297</td>
<td>0.001</td>
<td>0.046</td>
<td>0E-06</td>
</tr>
<tr>
<td>7</td>
<td>0.27</td>
<td>0.1397</td>
<td>0.001</td>
<td>0.046</td>
<td>0E-06</td>
</tr>
<tr>
<td>8</td>
<td>0.27</td>
<td>0.1497</td>
<td>0.001</td>
<td>0.046</td>
<td>0E-06</td>
</tr>
</tbody>
</table>

**Messgenauigkeiten**

- Zet in s: 0.1
- Masse in m²: 0.0028
- Prüffläche in m²: 0.0016
- Prüffläche in m²: 0.1063

**Empirische Varianz**

- Empirische Varianz der Steigung $s$: 0.0325
- Empirische Varianz des Achsenabstandes $s_{a}$: 0.0183
- Empirische Varianz der Steigung $s_{b}$: 0.0076
- Empirische Varianz des Achsenabstandes $s_{c}$: 0.0183

**Regressionsergebnisse**

Die Werte zwischen der Minute 2 und Minute 40 sind in dieser Darstellung aufgrund Platzmangels ausgelassen worden. Selbstredend sind diese Werte in der Fehlerrechnung, Auswertung und Beurteilung inbegriffen.

**Wasser aufnahmekoeffizient $W_{ax}$**

$W_{ax} = \frac{u}{b_{ax}} = \frac{0.05 - 0.014}{0.0025}$ kg/(m²·h)

**Berechnung der Prüffläche**

$Prüffläche = \frac{0.0106 ± 0.0026}{m²}$

**Lagerhalle, Fläche linke Seite**

<table>
<thead>
<tr>
<th>n</th>
<th>Höhe $h$ in m</th>
<th>Breite $b$ in m</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.28</td>
<td>0.375</td>
</tr>
<tr>
<td>2</td>
<td>0.28</td>
<td>0.384</td>
</tr>
<tr>
<td>3</td>
<td>0.28</td>
<td>0.383</td>
</tr>
<tr>
<td>4</td>
<td>0.28</td>
<td>0.382</td>
</tr>
<tr>
<td>5</td>
<td>0.27</td>
<td>0.367</td>
</tr>
<tr>
<td>6</td>
<td>0.27</td>
<td>0.367</td>
</tr>
<tr>
<td>7</td>
<td>0.28</td>
<td>0.381</td>
</tr>
<tr>
<td>8</td>
<td>0.28</td>
<td>0.381</td>
</tr>
</tbody>
</table>

**BFH AHB**

72FE-006970-F-01_Aussenputze_MZ.15.12.31
**A.3.2 Evilard West**

**WAM W1:**

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Messdatum: 13.08.2016</th>
<th>Fassadenfeuchte</th>
<th>Wetter</th>
<th>sonnig, Messung im Schatten</th>
<th>Lufttemperatur</th>
<th>8°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>76.33 Digits Gann</td>
<td></td>
<td></td>
<td></td>
<td>50</td>
</tr>
</tbody>
</table>

**Messprotokoll Stand 14.8.15**

**WAM 100**

<table>
<thead>
<tr>
<th>n</th>
<th>$x_i$</th>
<th>$x_{i-1}$</th>
<th>$x_{i+1}$</th>
<th>$y_{i-1}$</th>
<th>$y_{i+1}$</th>
<th>$y_i$</th>
<th>$y_{i-1}$</th>
<th>$y_{i+1}$</th>
<th>$y_i$</th>
<th>$y_i$</th>
<th>$y_i$</th>
<th>$y_i$</th>
<th>$x_i$</th>
<th>$x_{i-1}$</th>
<th>$x_{i+1}$</th>
<th>$x_i$</th>
<th>$x_i$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.00</td>
</tr>
</tbody>
</table>

**Die Werte zwischen der Minute 2 und Minute 40 sind in dieser Darstellung aufgrund Platzmangels ausgelassen worden. Selbstredend sind diese Werte in der Fehlerrechnung, Auswertung und Beurteilung inbegriffen.**

**Berechnung der Prüffläche**

<table>
<thead>
<tr>
<th>Lagerhalle, Fläche linke Seite</th>
<th>Höhe H in m</th>
<th>Breite b in m</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.28</td>
<td>1.081</td>
</tr>
<tr>
<td>2</td>
<td>0.3</td>
<td>2.037</td>
</tr>
<tr>
<td>3</td>
<td>0.29</td>
<td>3.082</td>
</tr>
<tr>
<td>4</td>
<td>0.29</td>
<td>4.038</td>
</tr>
<tr>
<td>5</td>
<td>0.29</td>
<td>5.038</td>
</tr>
</tbody>
</table>

$=>$ Prüffläche $0.110 \text{ m}^2$ $0.0040 \text{ kg/m}^2$
A.4 Labormessung nach EN ISO 15148:2002

A.4.1 Evilard Nord

Labormessung N1:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Messtdatum</th>
<th>rel. Luftfeuchte</th>
<th>Temp. Luft</th>
<th>Fassade</th>
<th>Kommentar</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>15.10.2015</td>
<td>50</td>
<td>23</td>
<td>Nord</td>
<td>Labormessung Lufttemperatur</td>
</tr>
</tbody>
</table>

Wasseraufnahmekoeffizient $W_w = (0.87 \pm 0.0416)$ kg/(m²√h)

$y = 0.8834x + 0.11$  
$R^2 = 1$  

Wasseraufnahme in kg/m²

Wurzel aus der Zeit in vh

Messwerte $E1$, $x$ aus $y$ E1, $y$ aus $x$ E1

Empirische Varianz $s_x$, $s_y$  
Empirische Kovarianz $s_{xy}$  
Empirischer Korrelationskoeffizient $r$  
Empirische Bestimmtheitsmass $r^2$

Empirische Varianz der Steigung $s_b$  
Empirische Varianz der Steigung $s_{b'}$  
Empirische Varianz der Restvarianzen $s_e$  
Empirische Restvarianz $s^2$
## Labormessung N2:

**Objekt**: Evilard
**Messprotokoll Stand 24.8.15**

**Fassade Nord**

**Kommentar**: Labormessung Lufttemperatur 23

**Nr.** 2

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Messdatum: 15.10.2015 - 16.10.2015</th>
<th>rel. Luftfeuchte</th>
<th>50</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zeit in s</th>
<th>2</th>
<th>120.00</th>
<th>1.1414</th>
<th>0.0002</th>
<th>1.322</th>
<th>0.0007</th>
<th>2.27</th>
<th>0.7073</th>
<th>0.0126</th>
<th>0.5006</th>
<th>0.7429</th>
<th>0.0001</th>
<th>0.74758</th>
<th>0.00083</th>
<th>1.0000</th>
</tr>
</thead>
<tbody>
<tr>
<td>fasse in m²</td>
<td>0.01</td>
<td>240.00</td>
<td>2</td>
<td>0.0001</td>
<td>4</td>
<td>1.912</td>
<td>0.0006</td>
<td>3.7</td>
<td>0.9686</td>
<td>0.0171</td>
<td>0.9401</td>
<td>0.9992</td>
<td>0.0001</td>
<td>0.99909</td>
<td>0.000655</td>
</tr>
<tr>
<td>6.64E-05</td>
<td>1</td>
<td>480.00</td>
<td>3.2886</td>
<td>0.0007</td>
<td>5.2</td>
<td>1.8627</td>
<td>0.0239</td>
<td>1.8509</td>
<td>0.1145</td>
<td>0.0001</td>
<td>1.33478</td>
<td>0.009275</td>
<td>1.8523</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.003816</td>
<td>1</td>
<td>600.00</td>
<td>1.3162</td>
<td>0.0008</td>
<td>5.7</td>
<td>1.5127</td>
<td>0.0264</td>
<td>2.2863</td>
<td>1.4927</td>
<td>0.0001</td>
<td>1.49031</td>
<td>0.002946</td>
<td>4.7815</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.7200</td>
<td>1</td>
<td>720.00</td>
<td>3.4641</td>
<td>0.0008</td>
<td>6.35</td>
<td>1.664</td>
<td>0.0299</td>
<td>2.769</td>
<td>1.6272</td>
<td>0.0002</td>
<td>1.62772</td>
<td>0.000118</td>
<td>5.7644</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1440</td>
<td>1</td>
<td>1440.00</td>
<td>4.8989</td>
<td>0.0008</td>
<td>8.5</td>
<td>2.2725</td>
<td>0.0389</td>
<td>4.9616</td>
<td>2.2427</td>
<td>0.0005</td>
<td>2.2438</td>
<td>0.002954</td>
<td>10.912</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Summen** 9 | 19.63402 | 61.417 | 9.8004 | 10.0000 | 29.1180 |

<table>
<thead>
<tr>
<th>Mittelwert</th>
<th>2.181058</th>
<th>1.07704</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emp. Kovarianz</td>
<td>1.09606</td>
<td>5.4644</td>
</tr>
<tr>
<td>Emp. Korrelation</td>
<td>0.999076</td>
<td>0.99922</td>
</tr>
</tbody>
</table>

**Wasseraufnahmekoeffizient W**

\[ W_w = \left( \frac{0.4294 \pm 0.041812}{95\%} \right) \text{ kg/(m}^2 \sqrt{h}) \]

\[ R^2 = 1 \]
<table>
<thead>
<tr>
<th>Nr.</th>
<th>Messdatum</th>
<th>Fassade</th>
<th>Kommentar</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>15.10.2015-16.10.2015</td>
<td>Nord</td>
<td>Labormessung Lufttemperatur</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Messwert</th>
<th>T in °C</th>
<th>x aus y</th>
<th>Masse in kg/m²</th>
<th>Prüffläche in m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.000</td>
<td>20.00</td>
<td>1.14</td>
<td>0.000</td>
<td>0.004116</td>
</tr>
<tr>
<td>2</td>
<td>1.000</td>
<td>120.00</td>
<td>1.41</td>
<td>0.28868</td>
<td>0.004116</td>
</tr>
<tr>
<td>3</td>
<td>2.000</td>
<td>240.00</td>
<td>2.07</td>
<td>0.57735</td>
<td>0.004116</td>
</tr>
<tr>
<td>4</td>
<td>3.000</td>
<td>480.00</td>
<td>2.79</td>
<td>1.41421</td>
<td>0.004116</td>
</tr>
<tr>
<td>5</td>
<td>4.000</td>
<td>720.00</td>
<td>3.39</td>
<td>3.4641</td>
<td>0.004116</td>
</tr>
<tr>
<td>6</td>
<td>5.000</td>
<td>1144.00</td>
<td>4.82</td>
<td>4.9889</td>
<td>0.004116</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Zeit in s</th>
<th>Rel. Luftfeuchte</th>
<th>x aus y</th>
<th>Masse in kg/m²</th>
<th>Prüffläche in m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.0000</td>
<td>0.227605</td>
<td>0.1835</td>
<td>0.004116</td>
<td>0.004116</td>
</tr>
<tr>
<td>2</td>
<td>2.0000</td>
<td>0.57735</td>
<td>0.3333</td>
<td>0.004116</td>
<td>0.004116</td>
</tr>
<tr>
<td>3</td>
<td>4.0000</td>
<td>2.0701</td>
<td>0.5921</td>
<td>0.004116</td>
<td>0.004116</td>
</tr>
<tr>
<td>4</td>
<td>6.0000</td>
<td>2.7933</td>
<td>0.7629</td>
<td>0.004116</td>
<td>0.004116</td>
</tr>
<tr>
<td>5</td>
<td>12.0000</td>
<td>3.3946</td>
<td>0.9014</td>
<td>0.004116</td>
<td>0.004116</td>
</tr>
<tr>
<td>6</td>
<td>24.0000</td>
<td>4.8286</td>
<td>1.2342</td>
<td>0.004116</td>
<td>0.004116</td>
</tr>
</tbody>
</table>

| Nr. | Wasseraufnahmekoeffizient W_a = (0.2297 +/- 0.11348 (95%)) kg/(m²√h) |

| Nr. | Wasseraufnahmekoeffizient W_a = (0.2297 +/- 0.11348 (95%)) kg/(m²√h) |

| Nr. | Wasseraufnahmekoeffizient W_a = (0.2297 +/- 0.11348 (95%)) kg/(m²√h) |

| Nr. | Wasseraufnahmekoeffizient W_a = (0.2297 +/- 0.11348 (95%)) kg/(m²√h) |
Labormessung N4:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>MessDatum: 15.10.2015 - 16.10.2015</th>
<th>rel. Luftfeuchte</th>
<th>23</th>
</tr>
</thead>
</table>

| Nr. | 1 | 5.00 | 0.28868 | 0.001 | 0.0831 | 0.136 | 0.0217 | 0.0727327 | 0.00071 | 0.0749277 | 0.17918 | 0.006 | 0.36513 | 0.0257811 | 0.0079 |
|-----|---|------|----------|-------|--------|-------|--------|-------------|--------|-------------|---------|------|--------|-----------|--------|------|
|     | 2 | 12.00 | 1.41421 | 2 | 1.636 | 0.0009 | 3.299 | 1.12577 | 0.0258 | 1.26723 | 1.0076 | 0.0032 | 0.100277 | 0.013106 | 1.592 |
|     | 1 | 24.00 | 2.82843 | 1.0001 | 4.2255 | 0.0099 | 4.333 | 1.41855 | 0.0338 | 2.79503 | 1.3345 | 0.0028 | 1.33463 | 0.011586 | 2.963 |
|     | 3 | 48.00 | 5.00000 | 1.0001 | 8.3069 | 0.0136 | 5.7 | 1.95033 | 0.0444 | 3.80374 | 1.7964 | 0.0037 | 1.80395 | 0.015368 | 5.516 |
|     | 1 | 60.00 | 6.00000 | 1.00003 | 1.161 | 0.0113 | 2.499 | 0.85188 | 0.0197 | 0.72587 | 0.7765 | 0.0004 | 0.76811 | 0.018279 | 0.852 |
|     | 2 | 120.00 | 1.44422 | 9.00002 | 2 | 1.636 | 0.0009 | 3.299 | 1.12577 | 0.0258 | 1.26723 | 1.0076 | 0.0032 | 1.00277 | 0.013106 | 1.592 |
|     | 3 | 240.00 | 2.82843 | 1.0001 | 4.2255 | 0.0099 | 4.333 | 1.41855 | 0.0338 | 2.79503 | 1.3345 | 0.0028 | 1.33463 | 0.011586 | 2.963 |

<table>
<thead>
<tr>
<th>Prüffläche in m²</th>
<th>6.64E-05</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zeit in s</td>
<td>6.64E-05</td>
</tr>
<tr>
<td>Masse in g</td>
<td>6.64E-05</td>
</tr>
<tr>
<td>Prüflänge in m²</td>
<td>6.64E-05</td>
</tr>
</tbody>
</table>

| Summen | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 |
|--------|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|----|

<table>
<thead>
<tr>
<th>Mittelwert</th>
<th>x</th>
<th>y</th>
<th>1.312955</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empir. Varianz sₓ², sᵧ²</td>
<td>2.540797</td>
<td>0.8155</td>
<td></td>
</tr>
<tr>
<td>Emp. Standardabweichung sₓ, sᵧ</td>
<td>1.593988</td>
<td>0.9030244</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Emp. Kovarianz sₓᵧ</th>
<th>1.41717</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emp. lineare Korrelationskoeffizient r</td>
<td>0.984547</td>
</tr>
<tr>
<td>Emp. Bestimmtheitsmass r²</td>
<td>0.9693</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Steigung bₓᵧ</th>
<th>0.557765</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steigung bᵧₓ</td>
<td>1.7379</td>
</tr>
<tr>
<td>Steigung bₓᵧ</td>
<td>0.5665</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Achsenabschnitt aₓ</th>
<th>0.218762</th>
</tr>
</thead>
<tbody>
<tr>
<td>Achsenabschnitt aᵧ</td>
<td>0.218762</td>
</tr>
<tr>
<td>Achsenabschnitt aₓᵧ</td>
<td>0.218762</td>
</tr>
</tbody>
</table>

| Emp. Varianz der Steigung sₓ² | 0.00123 |
| Emp. Varianz der Steigung sᵧ² | 0.00119 |
| Emp. Varianz der Steigung sₓᵧ² | 0.00115 |

| Emp. Varianz Mittelwert (bₓᵧ) | 0.00756 |
| Emp. Varianz Mittelwert (bᵧₓ) | 0.00756 |
| Emp. Varianz Mittelwert (bₓᵧ) | 0.00756 |

<table>
<thead>
<tr>
<th>Wasseraufnahmekoeffizient</th>
<th>0.5665</th>
</tr>
</thead>
<tbody>
<tr>
<td>(95%) kg/(m²√h)</td>
<td>0.0311</td>
</tr>
</tbody>
</table>
Objekt: Evilard
Kommentar: Labormessung Lufttemperatur 23
Fassade Nord
Messprotokoll Stand 24.8.15
 Nr. S Messdatum: 15.10.2015 - 16.10.2015

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Zeit in s</th>
<th>Masse in g</th>
<th>Prüffläche in m²</th>
<th>Zeit in s</th>
<th>Masse in g</th>
<th>Prüffläche in m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.00</td>
<td>0</td>
<td>0.0028</td>
<td>0.00</td>
<td>0</td>
<td>0.0028</td>
</tr>
<tr>
<td>2</td>
<td>5.00</td>
<td>0.2886</td>
<td>0.003</td>
<td>0.00</td>
<td>0.03</td>
<td>0.0028</td>
</tr>
<tr>
<td>3</td>
<td>20.00</td>
<td>0.5773</td>
<td>0.005</td>
<td>0.00</td>
<td>0.05</td>
<td>0.003</td>
</tr>
<tr>
<td>4</td>
<td>40.00</td>
<td>2.8284</td>
<td>0.013</td>
<td>0.00</td>
<td>0.13</td>
<td>0.005</td>
</tr>
<tr>
<td>5</td>
<td>60.00</td>
<td>6.64E-05</td>
<td>0.021</td>
<td>0.00</td>
<td>0.21</td>
<td>0.013</td>
</tr>
<tr>
<td>6</td>
<td>80.00</td>
<td>1.4142</td>
<td>0.042</td>
<td>0.00</td>
<td>0.42</td>
<td>0.021</td>
</tr>
<tr>
<td>7</td>
<td>120.00</td>
<td>2.1294</td>
<td>0.061</td>
<td>0.00</td>
<td>0.61</td>
<td>0.042</td>
</tr>
<tr>
<td>8</td>
<td>240.00</td>
<td>4.1846</td>
<td>0.123</td>
<td>0.00</td>
<td>0.123</td>
<td>0.061</td>
</tr>
<tr>
<td>9</td>
<td>360.00</td>
<td>7.2502</td>
<td>0.244</td>
<td>0.00</td>
<td>0.244</td>
<td>0.123</td>
</tr>
<tr>
<td>10</td>
<td>480.00</td>
<td>12.386</td>
<td>0.535</td>
<td>0.00</td>
<td>0.535</td>
<td>0.244</td>
</tr>
<tr>
<td>11</td>
<td>600.00</td>
<td>21.080</td>
<td>1.057</td>
<td>0.00</td>
<td>1.057</td>
<td>0.535</td>
</tr>
<tr>
<td>12</td>
<td>720.00</td>
<td>31.281</td>
<td>1.570</td>
<td>0.00</td>
<td>1.570</td>
<td>1.057</td>
</tr>
<tr>
<td>13</td>
<td>840.00</td>
<td>42.582</td>
<td>2.108</td>
<td>0.00</td>
<td>2.108</td>
<td>1.570</td>
</tr>
<tr>
<td>14</td>
<td>960.00</td>
<td>54.884</td>
<td>2.707</td>
<td>0.00</td>
<td>2.707</td>
<td>2.108</td>
</tr>
<tr>
<td>15</td>
<td>1080.00</td>
<td>68.286</td>
<td>3.307</td>
<td>0.00</td>
<td>3.307</td>
<td>2.707</td>
</tr>
<tr>
<td>16</td>
<td>1200.00</td>
<td>82.088</td>
<td>3.906</td>
<td>0.00</td>
<td>3.906</td>
<td>3.307</td>
</tr>
<tr>
<td>17</td>
<td>1320.00</td>
<td>96.990</td>
<td>4.505</td>
<td>0.00</td>
<td>4.505</td>
<td>3.906</td>
</tr>
<tr>
<td>18</td>
<td>1440.00</td>
<td>112.892</td>
<td>5.014</td>
<td>0.00</td>
<td>5.014</td>
<td>4.505</td>
</tr>
</tbody>
</table>

Summen
- 10.00 | 19.63402 | 61.417 | 15.42576 | 37.428693 | 47.9118

Empirische Standardabweichung sₓ, sᵧ 1.95844
Empirische Kovarianz sₓᵧ 0.9964 u = 2
Empirischer Restvarianz sₑ 2 0.006131
Empirischer Restvarianz s_d 2 0.0103
Empirischer Restvarianz sₑ 2 + s_d 2 0.0164

Wasseraufnahmekoeffizient Wₑ x = (0.7722 +/- 0.061782 (95%) kg/(m²*√h))
### Labormessung N6:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Objekt Evilard Messprotokoll Stand 24.8.15</th>
<th>Kommentar: Labormessung Lufttemperatur 23</th>
<th>Fassade Nord</th>
<th>rel. Luftfeuchte 59</th>
</tr>
</thead>
</table>

#### Messdaten:
- **Messdatum:** 15.10.2015 - 16.10.2015

#### Lufttemperatur:
- **Nr. 6**

#### Prüffläche:
- **6.64E-05 m²**

#### Wasseraufnahmekoeffizient:
- **Wₜ = (0,6541 ± 0.03969 (95%) kg/m²√h)**

### Tabelle:

<table>
<thead>
<tr>
<th>Zeit in s</th>
<th>Masse in g</th>
<th>Prüffläche in m²</th>
<th>10.00</th>
<th>20.00</th>
<th>60.00</th>
<th>120.00</th>
<th>240.00</th>
<th>480.00</th>
<th>960.00</th>
<th>1920.00</th>
<th>3840.00</th>
<th>7680.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.00</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>60.00</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>5.00</td>
<td>0.28868</td>
<td>0.001</td>
<td>0.033</td>
<td>1.41421</td>
<td>0.002</td>
<td>0.001</td>
<td>0.002</td>
<td>0.001</td>
<td>0.002</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>10</td>
<td>0.00</td>
<td>0.0003</td>
<td>0.000</td>
<td>0.0001</td>
<td>0.0003</td>
<td>0.0002</td>
<td>0.0001</td>
<td>0.0002</td>
<td>0.0001</td>
<td>0.0002</td>
<td>0.0001</td>
<td>0.0001</td>
</tr>
</tbody>
</table>

#### Regressionsgeraden:
- **u = y aus x**
- **x aus y**

#### Empirische Varianzen:
- **sₓ² = 0.0004**
- **sᵧ² = 0.0013**
- **sₓᵧ² = 0.0002**

#### Empirische Kovarianz:
- **sₓᵧ = 0.0004**

#### Empirischer linearer Korrelationskoeffizient:
- **r = 0.9988**
- **r² = 0.9976**

#### Empirische Varianz der Steigung:
- **s_b² = 0.0002**
- **s_b'² = 0.0013**

#### Empirische Standardabweichung:
- **sₓ = 0.0001**
- **sᵧ = 0.0002**
- **s_x'R = 0.0004**

#### Wasseraufnahmekoeffizient:
- **Wₜ = (0,6541 ± 0.03969 (95%) kg/m²√h)**

### Diagramm:

- **Messwerte E6**
- **x aus y E6**
- **y aus x E6**
- **FVM E6**

---

For a better understanding, the table contains values for mass, time, and measurements, along with calculations for variance and covariance.
Objekt: Evilard
Fassade: Nord
Kommentar: Labormessung Lufttemperatur 23

Nr. 7 Messdatum: 15.10.2015 - 16.10.2015
rel. Luftfeuchte

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Messdatum: 15.10.2015 - 16.10.2015</th>
<th>rel. Luftfeuchte</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5.00</td>
<td>0.00</td>
</tr>
<tr>
<td>2</td>
<td>12.00</td>
<td>0.00</td>
</tr>
<tr>
<td>3</td>
<td>24.00</td>
<td>0.00</td>
</tr>
<tr>
<td>4</td>
<td>48.00</td>
<td>0.00</td>
</tr>
<tr>
<td>5</td>
<td>60.00</td>
<td>0.00</td>
</tr>
<tr>
<td>6</td>
<td>120.00</td>
<td>0.00</td>
</tr>
<tr>
<td>7</td>
<td>240.00</td>
<td>0.00</td>
</tr>
<tr>
<td>8</td>
<td>480.00</td>
<td>0.00</td>
</tr>
<tr>
<td>9</td>
<td>1200.00</td>
<td>0.00</td>
</tr>
<tr>
<td>10</td>
<td>3000.00</td>
<td>0.00</td>
</tr>
<tr>
<td>11</td>
<td>6000.00</td>
<td>0.00</td>
</tr>
<tr>
<td>12</td>
<td>12000.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zeit in s</th>
<th>Masse in g</th>
<th>Prüffläche in m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>2</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>3</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>4</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>5</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>6</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>7</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>8</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>9</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>10</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>11</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>12</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Steigung b_y</th>
<th>Achsenabschnitt a_y</th>
<th>Steigung b'_y</th>
<th>Achsenabschnitt a'_y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.576953</td>
<td>0.111000</td>
<td>0.105967</td>
<td>0.009633</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Emp. Kovarianz s_y x</th>
<th>Emp. linearer Korrelationskoeffizient r, u = 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00241</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Wasseraufnahmekoeffizient W_{w}</th>
<th>(0.5797 +/- 0.091066 (95%)) kg/(m²√h)</th>
</tr>
</thead>
</table>

4.46502